{"title":"Comparative study on the electronic and magnetic properties of two-dimensional Janus materials: h-SVSiN2 and t-SVSiN2","authors":"Ruixue Li , Sicong Zhu , Jun Ding","doi":"10.1016/j.physe.2025.116212","DOIUrl":null,"url":null,"abstract":"<div><div>Search for two-dimensional magnetic semiconductors and half-metals are particularly significant for spintronic applications. By substituting N-Si-N atom group with S atoms on one side of SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayer, two Janus monolayers: <span><math><mi>h</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mi>t</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> were proposed. Through density functional theory, their electronic and magnetic properties have been studied systematically. Our results show that Janus <span><math><mi>h</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayer is an indirect semiconductor with intrinsic ferromagnetic order, while Janus <span><math><mi>t</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayer exhibits half-metallic feature. They both possess easy-plane magnetic anisotropy, with Curie temperature of 290 and 136 K for <span><math><mi>h</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mi>t</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayers, respectively. The electronic structures can be regulated by biaxial strain, such as semiconductor to half-metal transition. A spintronic device based on <span><math><mi>t</mi></math></span>-SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayer has been designed, showing high magnetoresistance ratio and excellent spin filtering effect. These findings imply that Janus SVSiN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayers are promising for 2D magnetism and spintronics.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"169 ","pages":"Article 116212"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000372","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Search for two-dimensional magnetic semiconductors and half-metals are particularly significant for spintronic applications. By substituting N-Si-N atom group with S atoms on one side of SVSiN monolayer, two Janus monolayers: -SVSiN and -SVSiN were proposed. Through density functional theory, their electronic and magnetic properties have been studied systematically. Our results show that Janus -SVSiN monolayer is an indirect semiconductor with intrinsic ferromagnetic order, while Janus -SVSiN monolayer exhibits half-metallic feature. They both possess easy-plane magnetic anisotropy, with Curie temperature of 290 and 136 K for -SVSiN and -SVSiN monolayers, respectively. The electronic structures can be regulated by biaxial strain, such as semiconductor to half-metal transition. A spintronic device based on -SVSiN monolayer has been designed, showing high magnetoresistance ratio and excellent spin filtering effect. These findings imply that Janus SVSiN monolayers are promising for 2D magnetism and spintronics.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures