The flavouring agent, 2-octenoic acid kills Galleria mellonella (Lepidoptera: Pyralidae) by affecting their immunocompetent cells and cuticular FFA profiles
{"title":"The flavouring agent, 2-octenoic acid kills Galleria mellonella (Lepidoptera: Pyralidae) by affecting their immunocompetent cells and cuticular FFA profiles","authors":"Agata Kaczmarek , Mieczysława Irena Boguś","doi":"10.1016/j.jinsphys.2025.104779","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of the naturally occurring flavouring agent, <em>trans</em>-2-octenoic acid, on the insect model <em>Galleria mellonella</em> by examining its impact on immunocompetent cells and free fatty acid (FFA) profiles in the cuticle. The value of LD50 for 2-octenoic acid has been calculated as 9.66 µg/mg of insect body mass, this value is outside the GHS scale, indicating that the compound is unlikely to cause acute toxicity after dermal application and is safe for humans and mammals. The<!--> <!-->treatment with 2-octenoic acid caused several changes in the insect defence mechanismes, <em>viz.</em> changes in cuticular FFA profiles and death of immunocompetent cells. In larvae, topical treatment of 2-octenoic acid increased the concentration of cuticular FFAs, particularly C6:0 (245 times higher), C15:0 (110 times higher), and C16:1 (1608 times higher), and 2-octenoic acid (C8:1) accumulated significantly on the surface of the cuticle. In adults, treatment resulted in lower cuticular C8:1concentrations than in larvae, which might indicate that 2-octenoic acid penetrates more effectively through the adult cuticle. The 2-octenoic acid application demonstrated considerable cytotoxicity against insect cell line Sf9 and <em>G. mellonella</em> hemocytes, with both <em>in vivo</em> and <em>in vitro</em> treatment. Our findings contribute to the broader understanding of how synthetic and naturally occurring chemicals may interact with the immune and physiological systems of insects, particularly focusing on <em>G. mellonella</em> as a model organism for toxicological studies. Given the increasing interest in the ecological and physiological impacts of food additives, our research provides novel insights into the biological interactions of 2-octenoic acid and its potential role as an insecticide.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"161 ","pages":"Article 104779"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191025000332","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of the naturally occurring flavouring agent, trans-2-octenoic acid, on the insect model Galleria mellonella by examining its impact on immunocompetent cells and free fatty acid (FFA) profiles in the cuticle. The value of LD50 for 2-octenoic acid has been calculated as 9.66 µg/mg of insect body mass, this value is outside the GHS scale, indicating that the compound is unlikely to cause acute toxicity after dermal application and is safe for humans and mammals. The treatment with 2-octenoic acid caused several changes in the insect defence mechanismes, viz. changes in cuticular FFA profiles and death of immunocompetent cells. In larvae, topical treatment of 2-octenoic acid increased the concentration of cuticular FFAs, particularly C6:0 (245 times higher), C15:0 (110 times higher), and C16:1 (1608 times higher), and 2-octenoic acid (C8:1) accumulated significantly on the surface of the cuticle. In adults, treatment resulted in lower cuticular C8:1concentrations than in larvae, which might indicate that 2-octenoic acid penetrates more effectively through the adult cuticle. The 2-octenoic acid application demonstrated considerable cytotoxicity against insect cell line Sf9 and G. mellonella hemocytes, with both in vivo and in vitro treatment. Our findings contribute to the broader understanding of how synthetic and naturally occurring chemicals may interact with the immune and physiological systems of insects, particularly focusing on G. mellonella as a model organism for toxicological studies. Given the increasing interest in the ecological and physiological impacts of food additives, our research provides novel insights into the biological interactions of 2-octenoic acid and its potential role as an insecticide.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.