Conifer epiphytic phyllosphere bacterial communities respond more strongly to rain exclusion and host species identity than to soil water content

IF 3.7 2区 农林科学 Q1 FORESTRY Forest Ecology and Management Pub Date : 2025-02-13 DOI:10.1016/j.foreco.2025.122554
Rim Khlifa , Marie Renaudin , Daniel Houle , Loïc D’Orangeville , Louis Duchesne , Steven W. Kembel
{"title":"Conifer epiphytic phyllosphere bacterial communities respond more strongly to rain exclusion and host species identity than to soil water content","authors":"Rim Khlifa ,&nbsp;Marie Renaudin ,&nbsp;Daniel Houle ,&nbsp;Loïc D’Orangeville ,&nbsp;Louis Duchesne ,&nbsp;Steven W. Kembel","doi":"10.1016/j.foreco.2025.122554","DOIUrl":null,"url":null,"abstract":"<div><div>With global warming, the frequency and intensity of drought episodes are projected to increase worldwide, especially in the boreal forest. This represents a serious threat to the boreal forest ecosystem’s productivity and environmental services. It is thus crucial to better understand how drought or water limitation could affect boreal forest ecosystems functioning, and to be prepared to overcome damage caused by drought events. Studies suggest that microbes may mitigate the negative effects of drought or water shortage on plants. However, most of these studies focused on soil microbes and on agricultural ecosystems. Here, we used a rainout shelters and soil irrigation experimental design to study the response to rain exclusion and soil water content of epiphytic phyllosphere bacterial communities associated with four boreal conifer tree species. Our results showed only a weak response of phyllosphere bacterial communities to variation in soil water content. On the other hand, host tree species identity and rain exclusion were the main drivers of epiphytic phyllosphere bacterial communities’ structure and diversity. This suggests that fewer rain events, in the context of climate change, would impact boreal trees phyllosphere microbiome composition.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"581 ","pages":"Article 122554"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112725000623","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

With global warming, the frequency and intensity of drought episodes are projected to increase worldwide, especially in the boreal forest. This represents a serious threat to the boreal forest ecosystem’s productivity and environmental services. It is thus crucial to better understand how drought or water limitation could affect boreal forest ecosystems functioning, and to be prepared to overcome damage caused by drought events. Studies suggest that microbes may mitigate the negative effects of drought or water shortage on plants. However, most of these studies focused on soil microbes and on agricultural ecosystems. Here, we used a rainout shelters and soil irrigation experimental design to study the response to rain exclusion and soil water content of epiphytic phyllosphere bacterial communities associated with four boreal conifer tree species. Our results showed only a weak response of phyllosphere bacterial communities to variation in soil water content. On the other hand, host tree species identity and rain exclusion were the main drivers of epiphytic phyllosphere bacterial communities’ structure and diversity. This suggests that fewer rain events, in the context of climate change, would impact boreal trees phyllosphere microbiome composition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Forest Ecology and Management
Forest Ecology and Management 农林科学-林学
CiteScore
7.50
自引率
10.80%
发文量
665
审稿时长
39 days
期刊介绍: Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world. A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers. We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include: 1. Clear connections between the ecology and management of forests; 2. Novel ideas or approaches to important challenges in forest ecology and management; 3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023); 4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript. The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.
期刊最新文献
Density-dependent selection effect of dominant species rather than species diversity increased aboveground biomass accumulation in a temperate oak forest Spruce hybrids show superior lifespan growth but intermediate response to climate stress compared to their ecologically divergent parental species Litter context shapes seed persistence of an invasive pine in Patagonia The importance of the volatile carbon fraction in estimating deadwood carbon concentrations The future is uncertain: Wind resilient forests in a changing climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1