Shock Induced Metal Globules in Chang'e-5 Impact Melt Splash and Implication for the Coalescence Growth of Submicroscopic Metal Particles in Lunar Soil
{"title":"Shock Induced Metal Globules in Chang'e-5 Impact Melt Splash and Implication for the Coalescence Growth of Submicroscopic Metal Particles in Lunar Soil","authors":"Chengxiang Yin, Xiaohui Fu, Haijun Cao, Xuejin Lu, Jian Chen, Jiang Zhang, Zongcheng Ling, Xiaochao Che","doi":"10.1029/2024JE008733","DOIUrl":null,"url":null,"abstract":"<p>Submicroscopic metallic iron particles (SMFe) are unique components of lunar soil produced during long-term exposure on the Moon's surface. They can significantly alter the optical properties of lunar soil and this alteration is crucial for the interpretation of remote sensing data. The origin and formation of SMFe remain a subject of controversy, with multiple competing mechanisms coexisting. The newly returned Chang'e-5 (CE-5) samples provide a new opportunity to elucidate the formation of SMFe. Here, we conducted a systematical study on the morphology and chemical characteristics of metal globules in CE-5 impact melt splash. A total of 30,630 metal globules were identified with an average diameter of 222.87 nm. Most of them are nearly/perfectly spherical, but the others are irregular in shape. Three types of irregular metal globules have been found: Spindle type, deformation type, and coalescence type. Spindle and deformation types were formed under the influence of local thermal disequilibrium and/or differences in wettability, while the coalescence type reflects the growth of metal globules driven by the Oswald ripening. A series of metal globules at different coalescence stages were found, providing conclusive petrographic evidence for the long-term hypothesis of SMFe growth (e.g., Pieters & Noble, 2016, https://doi.org/10.1002/2016je005128). Geochemical analysis shows that meteoritic Fe-Ni metals (like iron meteorite) made a significant contribution to the formation of metal globules. This further indicates the contribution of exotic meteoroid materials to the CE-5 lunar soil.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008733","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Submicroscopic metallic iron particles (SMFe) are unique components of lunar soil produced during long-term exposure on the Moon's surface. They can significantly alter the optical properties of lunar soil and this alteration is crucial for the interpretation of remote sensing data. The origin and formation of SMFe remain a subject of controversy, with multiple competing mechanisms coexisting. The newly returned Chang'e-5 (CE-5) samples provide a new opportunity to elucidate the formation of SMFe. Here, we conducted a systematical study on the morphology and chemical characteristics of metal globules in CE-5 impact melt splash. A total of 30,630 metal globules were identified with an average diameter of 222.87 nm. Most of them are nearly/perfectly spherical, but the others are irregular in shape. Three types of irregular metal globules have been found: Spindle type, deformation type, and coalescence type. Spindle and deformation types were formed under the influence of local thermal disequilibrium and/or differences in wettability, while the coalescence type reflects the growth of metal globules driven by the Oswald ripening. A series of metal globules at different coalescence stages were found, providing conclusive petrographic evidence for the long-term hypothesis of SMFe growth (e.g., Pieters & Noble, 2016, https://doi.org/10.1002/2016je005128). Geochemical analysis shows that meteoritic Fe-Ni metals (like iron meteorite) made a significant contribution to the formation of metal globules. This further indicates the contribution of exotic meteoroid materials to the CE-5 lunar soil.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.