Nanoconjugate Improves Cognitive Deficit and Limits the Pathogenic Tau Burden in Okadaic-Acid-Induced Alzheimer's Mice

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Advanced Therapeutics Pub Date : 2025-03-03 DOI:10.1002/adtp.202400462
Qiuju Liang, Shoubo Xiang, Pengzhen Wang, Lian Chen, Hongyi Cao, Cheng Tian, Tingting Jiang, Hua Zuo, Zhen Tian, Sanjib Bhattacharyya
{"title":"Nanoconjugate Improves Cognitive Deficit and Limits the Pathogenic Tau Burden in Okadaic-Acid-Induced Alzheimer's Mice","authors":"Qiuju Liang,&nbsp;Shoubo Xiang,&nbsp;Pengzhen Wang,&nbsp;Lian Chen,&nbsp;Hongyi Cao,&nbsp;Cheng Tian,&nbsp;Tingting Jiang,&nbsp;Hua Zuo,&nbsp;Zhen Tian,&nbsp;Sanjib Bhattacharyya","doi":"10.1002/adtp.202400462","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer's disease (AD) is characterized by a progressive loss of cognition and its distinct hyperphosphorylated Tau (p-tau) pathology. Both insulin resistance(IRT) and p-tau share a causal relationship in AD, whereas the connective mechanism between them remains largely unknown. Tau protein is considered the primary target to combat AD as loss of Tau function triggers neuronal loss in AD. In the prior report, it is observed that self-therapeutic gold nanoparticles alleviate Tauopathy in models of AD. Gold nanoparticles (AuNPs)─polyethylene glycol 2000 (PEG<sub>2000</sub>)─transferrin (Tf) nanoconjugate is synthesized for passive targeting to pharmacologically regulate neuronal tau. It is observed that AuNPs─PEG<sub>2000</sub>─Tf decreases p-tau while restores insulin receptor(IR) and activates protein kinase B (AKT) kinase in SHSY5Y cell overexpressing Tau. AuNPs─PEG<sub>2000</sub>─Tf downregulates transferrin receptor by inhibiting recombinant divalent metal transporter 1 protein, affecting Fe<sup>2+</sup> accumulation. AuNPs─PEG<sub>2000</sub>─Tf improves learning ability of mice in okadaic-acid-induced, stereotaxic model in a dose-dependent fashion compared to memantine and subsequently decreases both p-tau and acetyl tau levels and upregulates the AKT signal. Changes in p-tau/Tau index from mouse brain homogenate is diminished following AuNPs─PEG<sub>2000</sub>─Tf treatment as a desired therapeutic outcome. Given AuNPs─PEG<sub>2000</sub>─Tf treatment restricts pathogenic conversion of Tau (p-tau, acetyl Tau), further investigation is warranted to bridge the connection between gold-nanoparticle-mediated alteration of IRT and AD progression.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is characterized by a progressive loss of cognition and its distinct hyperphosphorylated Tau (p-tau) pathology. Both insulin resistance(IRT) and p-tau share a causal relationship in AD, whereas the connective mechanism between them remains largely unknown. Tau protein is considered the primary target to combat AD as loss of Tau function triggers neuronal loss in AD. In the prior report, it is observed that self-therapeutic gold nanoparticles alleviate Tauopathy in models of AD. Gold nanoparticles (AuNPs)─polyethylene glycol 2000 (PEG2000)─transferrin (Tf) nanoconjugate is synthesized for passive targeting to pharmacologically regulate neuronal tau. It is observed that AuNPs─PEG2000─Tf decreases p-tau while restores insulin receptor(IR) and activates protein kinase B (AKT) kinase in SHSY5Y cell overexpressing Tau. AuNPs─PEG2000─Tf downregulates transferrin receptor by inhibiting recombinant divalent metal transporter 1 protein, affecting Fe2+ accumulation. AuNPs─PEG2000─Tf improves learning ability of mice in okadaic-acid-induced, stereotaxic model in a dose-dependent fashion compared to memantine and subsequently decreases both p-tau and acetyl tau levels and upregulates the AKT signal. Changes in p-tau/Tau index from mouse brain homogenate is diminished following AuNPs─PEG2000─Tf treatment as a desired therapeutic outcome. Given AuNPs─PEG2000─Tf treatment restricts pathogenic conversion of Tau (p-tau, acetyl Tau), further investigation is warranted to bridge the connection between gold-nanoparticle-mediated alteration of IRT and AD progression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
期刊最新文献
Issue Information (Adv. Therap. 3/2025) Nanoparticles in Allergen-Delivery Systems for Allergen-Specific Immunotherapy (Adv. Therap. 3/2025) Therapeutic Potential of Inulin-Coated MCT Microcapsules in Modulating the Gut Microbiome for Effective Treatment of Diet-Induced Obesity (Adv. Therap. 3/2025) Nanoconjugate Improves Cognitive Deficit and Limits the Pathogenic Tau Burden in Okadaic-Acid-Induced Alzheimer's Mice Nanotechnology in Gene Editing: Pioneering CRISPR-Cas Delivery Systems to Tackle Antibiotic Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1