Nanotechnology in Gene Editing: Pioneering CRISPR-Cas Delivery Systems to Tackle Antibiotic Resistance

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Advanced Therapeutics Pub Date : 2025-03-03 DOI:10.1002/adtp.202400412
Sahar Gholamian, Pooya Baghaee, Mohammad Doroudian
{"title":"Nanotechnology in Gene Editing: Pioneering CRISPR-Cas Delivery Systems to Tackle Antibiotic Resistance","authors":"Sahar Gholamian,&nbsp;Pooya Baghaee,&nbsp;Mohammad Doroudian","doi":"10.1002/adtp.202400412","DOIUrl":null,"url":null,"abstract":"<p>The rise of antibiotic-resistant bacteria, driven by antibiotic misuse, is a major global health threat. Addressing this issue requires understanding resistance mechanisms and developing innovative solutions. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated systems (Cas), a genome-editing tool derived from prokaryotic defense mechanisms, offers precise targeting of antibiotic-resistant genes. By reprogramming CRISPR-Cas, bacteria can be killed or resensitized to antibiotics through plasmid curing. However, clinical applications face challenges, particularly in delivering CRISPR-Cas components effectively. Nanotechnology has emerged as a promising approach for targeted delivery to tissues and cells. This paper explores the molecular mechanisms of antibiotic resistance, emphasizing the structure and function of CRISPR-Cas systems and their delivery mechanisms. It highlights the use of nanoparticles (NPs) and nanoscale carriers to deliver CRISPR-Cas components, reviewing recent studies that combine NPs and CRISPR to target resistance genes. Additionally, the paper discusses current challenges and future prospects in this field, underscoring the potential of CRISPR-Cas and nanotechnology to combat antibiotic resistance.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of antibiotic-resistant bacteria, driven by antibiotic misuse, is a major global health threat. Addressing this issue requires understanding resistance mechanisms and developing innovative solutions. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated systems (Cas), a genome-editing tool derived from prokaryotic defense mechanisms, offers precise targeting of antibiotic-resistant genes. By reprogramming CRISPR-Cas, bacteria can be killed or resensitized to antibiotics through plasmid curing. However, clinical applications face challenges, particularly in delivering CRISPR-Cas components effectively. Nanotechnology has emerged as a promising approach for targeted delivery to tissues and cells. This paper explores the molecular mechanisms of antibiotic resistance, emphasizing the structure and function of CRISPR-Cas systems and their delivery mechanisms. It highlights the use of nanoparticles (NPs) and nanoscale carriers to deliver CRISPR-Cas components, reviewing recent studies that combine NPs and CRISPR to target resistance genes. Additionally, the paper discusses current challenges and future prospects in this field, underscoring the potential of CRISPR-Cas and nanotechnology to combat antibiotic resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
期刊最新文献
Issue Information (Adv. Therap. 3/2025) Nanoparticles in Allergen-Delivery Systems for Allergen-Specific Immunotherapy (Adv. Therap. 3/2025) Therapeutic Potential of Inulin-Coated MCT Microcapsules in Modulating the Gut Microbiome for Effective Treatment of Diet-Induced Obesity (Adv. Therap. 3/2025) Nanoconjugate Improves Cognitive Deficit and Limits the Pathogenic Tau Burden in Okadaic-Acid-Induced Alzheimer's Mice Nanotechnology in Gene Editing: Pioneering CRISPR-Cas Delivery Systems to Tackle Antibiotic Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1