Development and validation of a CT-based radiomic nomogram for predicting surgical resection risk in patients with adhesive small bowel obstruction.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-02-11 DOI:10.1186/s12880-025-01575-7
Zhibo Wang, Ling Zhu, Shunli Liu, Dalue Li, Jingnong Liu, Xiaoming Zhou, Yuxi Wang, Ruiqing Liu
{"title":"Development and validation of a CT-based radiomic nomogram for predicting surgical resection risk in patients with adhesive small bowel obstruction.","authors":"Zhibo Wang, Ling Zhu, Shunli Liu, Dalue Li, Jingnong Liu, Xiaoming Zhou, Yuxi Wang, Ruiqing Liu","doi":"10.1186/s12880-025-01575-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adhesive small bowel obstruction (ASBO) is a common emergency that requires prompt medical attention, and the timing of surgical intervention poses a considerable challenge. Although computed tomography (CT) is widely used, its effectiveness in accurately identifying bowel strangulation is limited. The potential of radiomics models to predict the necessity for surgical resection in ASBO cases is not yet fully explored.</p><p><strong>Objectives: </strong>The aim of this study is to identify risk factors for surgical resection in patients with ASBO and to develop a predictive model that integrates radiomic features with clinical data. This model designed to estimate the likelihood of surgical intervention and aid in clinical decision-making for acute ASBO cases.</p><p><strong>Methods: </strong>From January 2019 to February 2022, we enrolled 188 ASBO patients from our hospital, dividing them randomly into a training cohort (n = 131) and a test cohort (n = 57) using a 7:3 ratio. We collected baseline clinical data and extracted radiomic features from CT images to compute a radiomic score (Rad-score). A nomogram was developed that combines clinical characteristics and Rad-score. The performance of clinical, radiomic, and combined nomogram models was evaluated in both cohorts.</p><p><strong>Results: </strong>Of the 188 patients, 92 underwent surgical resection, while 96 did not. The nomogram integrated factors such as white blood cell count, duration of obstruction, and preoperative infection indicators (fever, tachycardia, peritonitis), along with CT findings (elevated wall density, thickened wall, mesenteric fluid, ascites, bowel wall gas, small bowel feces, and hyperdensity of mesenteric fat) (p < 0.1). This combined model accurately predicted the need for surgical resection, with area under the curve (AUC) values of 0.761 (95% CI, 0.628-0.893) for the test cohort. Calibration curves showed strong agreement between predicted and observed outcomes, and decision curve analysis validated the model's utility for acute ASBO cases.</p><p><strong>Conclusion: </strong>We developed and validated a CT-based nomogram that combines radiomic features with clinical data to predict the risk of surgical resection in ASBO patients. This tool offers valuable support for treatment planning and decision-making in emergent situations.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"46"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01575-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Adhesive small bowel obstruction (ASBO) is a common emergency that requires prompt medical attention, and the timing of surgical intervention poses a considerable challenge. Although computed tomography (CT) is widely used, its effectiveness in accurately identifying bowel strangulation is limited. The potential of radiomics models to predict the necessity for surgical resection in ASBO cases is not yet fully explored.

Objectives: The aim of this study is to identify risk factors for surgical resection in patients with ASBO and to develop a predictive model that integrates radiomic features with clinical data. This model designed to estimate the likelihood of surgical intervention and aid in clinical decision-making for acute ASBO cases.

Methods: From January 2019 to February 2022, we enrolled 188 ASBO patients from our hospital, dividing them randomly into a training cohort (n = 131) and a test cohort (n = 57) using a 7:3 ratio. We collected baseline clinical data and extracted radiomic features from CT images to compute a radiomic score (Rad-score). A nomogram was developed that combines clinical characteristics and Rad-score. The performance of clinical, radiomic, and combined nomogram models was evaluated in both cohorts.

Results: Of the 188 patients, 92 underwent surgical resection, while 96 did not. The nomogram integrated factors such as white blood cell count, duration of obstruction, and preoperative infection indicators (fever, tachycardia, peritonitis), along with CT findings (elevated wall density, thickened wall, mesenteric fluid, ascites, bowel wall gas, small bowel feces, and hyperdensity of mesenteric fat) (p < 0.1). This combined model accurately predicted the need for surgical resection, with area under the curve (AUC) values of 0.761 (95% CI, 0.628-0.893) for the test cohort. Calibration curves showed strong agreement between predicted and observed outcomes, and decision curve analysis validated the model's utility for acute ASBO cases.

Conclusion: We developed and validated a CT-based nomogram that combines radiomic features with clinical data to predict the risk of surgical resection in ASBO patients. This tool offers valuable support for treatment planning and decision-making in emergent situations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Application of CT-based radiomics combined with laboratory tests such as AFP and PIVKA-II in preoperative prediction of pathologic grade of hepatocellular carcinoma. Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning. Correction: Distinct circle of willis anatomical configurations in healthy preterm born adults: a 3D time-of-flight magnetic resonance angiography study. Radiomics model building from multiparametric MRI to predict Ki-67 expression in patients with primary central nervous system lymphomas: a multicenter study. Value of a combined magnetic resonance-enhanced and diffusion-weighted imaging dual-sequence radiomics model in predicting the efficacy of high-intensity focused ultrasound ablation for uterine fibroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1