Classifying and fact-checking health-related information about COVID-19 on Twitter/X using machine learning and deep learning models.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-11 DOI:10.1186/s12911-025-02895-y
Elham Sharifpoor, Maryam Okhovati, Mostafa Ghazizadeh-Ahsaee, Mina Avaz Beigi
{"title":"Classifying and fact-checking health-related information about COVID-19 on Twitter/X using machine learning and deep learning models.","authors":"Elham Sharifpoor, Maryam Okhovati, Mostafa Ghazizadeh-Ahsaee, Mina Avaz Beigi","doi":"10.1186/s12911-025-02895-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite recent progress in misinformation detection methods, further investigation is required to develop more robust fact-checking models with particular consideration for the unique challenges of health information sharing. This study aimed to identify the most effective approach for detecting and classifying reliable information versus misinformation health content shared on Twitter/X related to COVID-19.</p><p><strong>Methods: </strong>We have used 7 different machine learning/deep learning models. Tweets were collected, processed, labeled, and analyzed using relevant keywords and hashtags, then classified into two distinct datasets: \"Trustworthy information\" versus \"Misinformation\", through a labeling process. The cosine similarity metric was employed to address oversampling the minority of the Trustworthy information class, ensuring a more balanced representation of both classes for training and testing purposes. Finally, the performance of the various fact-checking models was analyzed and compared using accuracy, precision, recall, and F1-score ROC curve, and AUC.</p><p><strong>Results: </strong>For measures of accuracy, precision, F1 score, and recall, the average values of TextConvoNet were found to be 90.28, 90.28, 90.29, and 0.9030, respectively. ROC AUC was 0.901.\"Trustworthy information\" class achieved an accuracy of 85%, precision of 93%, recall of 86%, and F1 score of 89%. These values were higher than other models. Moreover, its performance in the misinformation category was even more impressive, with an accuracy of 94%, precision of 88%, recall of 94%, and F1 score of 91%.</p><p><strong>Conclusion: </strong>This study showed that TextConvoNet was the most effective in detecting and classifying trustworthy information V.S misinformation related to health issues that have been shared on Twitter/X.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"73"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02895-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite recent progress in misinformation detection methods, further investigation is required to develop more robust fact-checking models with particular consideration for the unique challenges of health information sharing. This study aimed to identify the most effective approach for detecting and classifying reliable information versus misinformation health content shared on Twitter/X related to COVID-19.

Methods: We have used 7 different machine learning/deep learning models. Tweets were collected, processed, labeled, and analyzed using relevant keywords and hashtags, then classified into two distinct datasets: "Trustworthy information" versus "Misinformation", through a labeling process. The cosine similarity metric was employed to address oversampling the minority of the Trustworthy information class, ensuring a more balanced representation of both classes for training and testing purposes. Finally, the performance of the various fact-checking models was analyzed and compared using accuracy, precision, recall, and F1-score ROC curve, and AUC.

Results: For measures of accuracy, precision, F1 score, and recall, the average values of TextConvoNet were found to be 90.28, 90.28, 90.29, and 0.9030, respectively. ROC AUC was 0.901."Trustworthy information" class achieved an accuracy of 85%, precision of 93%, recall of 86%, and F1 score of 89%. These values were higher than other models. Moreover, its performance in the misinformation category was even more impressive, with an accuracy of 94%, precision of 88%, recall of 94%, and F1 score of 91%.

Conclusion: This study showed that TextConvoNet was the most effective in detecting and classifying trustworthy information V.S misinformation related to health issues that have been shared on Twitter/X.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Analytical validation of Exandra: a clinical decision support system for promoting guideline-directed therapy of type-2 diabetes in primary care - a collaborative study with experts from Diabetes Canada. Haematology dimension reduction, a large scale application to regular care haematology data. Prediction of adverse pregnancy outcomes using machine learning techniques: evidence from analysis of electronic medical records data in Rwanda. A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies. A novel method for screening malignant hematological diseases by constructing an optimal machine learning model based on blood cell parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1