Haematology dimension reduction, a large scale application to regular care haematology data.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-12 DOI:10.1186/s12911-025-02899-8
Huibert-Jan Joosse, Chontira Chumsaeng-Reijers, Albert Huisman, Imo E Hoefer, Wouter W van Solinge, Saskia Haitjema, Bram van Es
{"title":"Haematology dimension reduction, a large scale application to regular care haematology data.","authors":"Huibert-Jan Joosse, Chontira Chumsaeng-Reijers, Albert Huisman, Imo E Hoefer, Wouter W van Solinge, Saskia Haitjema, Bram van Es","doi":"10.1186/s12911-025-02899-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The routine diagnostic process increasingly entails the processing of high-volume and high-dimensional data that cannot be directly visualised. This processing may provide scaling issues that limit the implementation of these types of data into research as well as integrated diagnostics in routine care. Here, we investigate whether we can use existing dimension reduction techniques to provide visualisations and analyses for a complete bloodcount (CBC) while maintaining representativeness of the original data. We considered over 3 million CBC measurements encompassing over 70 parameters of cell frequency, size and complexity from the UMC Utrecht UPOD database. We evaluated PCA as an example of a linear dimension reduction techniques and UMAP, TriMap and PaCMAP as non-linear dimension reduction techniques. We assessed their technical performance using quality metrics for dimension reduction as well as biological representation by evaluating preservation of diurnal, age and sex patterns, cluster preservation and the identification of leukemia patients.</p><p><strong>Results: </strong>We found that, for clinical hematology data, PCA performs systematically better than UMAP, TriMap and PaCMAP in representing the underlying data. Biological relevance was retained for periodicity in the data. However, we also observed a decrease in predictive performance of the reduced data for both age and sex, as well as an overestimation of clusters within the reduced data. Finally, we were able to identify the diverging patterns for leukemia patients after use of dimensionality reduction methods.</p><p><strong>Conclusions: </strong>We conclude that for hematology data, the use of unsupervised dimension reduction techniques should be limited to data visualization applications, as implementing them in diagnostic pipelines may lead to decreased quality of integrated diagnostics in routine care.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"75"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02899-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The routine diagnostic process increasingly entails the processing of high-volume and high-dimensional data that cannot be directly visualised. This processing may provide scaling issues that limit the implementation of these types of data into research as well as integrated diagnostics in routine care. Here, we investigate whether we can use existing dimension reduction techniques to provide visualisations and analyses for a complete bloodcount (CBC) while maintaining representativeness of the original data. We considered over 3 million CBC measurements encompassing over 70 parameters of cell frequency, size and complexity from the UMC Utrecht UPOD database. We evaluated PCA as an example of a linear dimension reduction techniques and UMAP, TriMap and PaCMAP as non-linear dimension reduction techniques. We assessed their technical performance using quality metrics for dimension reduction as well as biological representation by evaluating preservation of diurnal, age and sex patterns, cluster preservation and the identification of leukemia patients.

Results: We found that, for clinical hematology data, PCA performs systematically better than UMAP, TriMap and PaCMAP in representing the underlying data. Biological relevance was retained for periodicity in the data. However, we also observed a decrease in predictive performance of the reduced data for both age and sex, as well as an overestimation of clusters within the reduced data. Finally, we were able to identify the diverging patterns for leukemia patients after use of dimensionality reduction methods.

Conclusions: We conclude that for hematology data, the use of unsupervised dimension reduction techniques should be limited to data visualization applications, as implementing them in diagnostic pipelines may lead to decreased quality of integrated diagnostics in routine care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Analytical validation of Exandra: a clinical decision support system for promoting guideline-directed therapy of type-2 diabetes in primary care - a collaborative study with experts from Diabetes Canada. Haematology dimension reduction, a large scale application to regular care haematology data. Prediction of adverse pregnancy outcomes using machine learning techniques: evidence from analysis of electronic medical records data in Rwanda. A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies. A novel method for screening malignant hematological diseases by constructing an optimal machine learning model based on blood cell parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1