Aging and post-polymerization effects on conversion degree and properties of additive splint materials.

IF 1.5 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE Brazilian oral research Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.1590/1807-3107bor-2025.vol39.017
Leandro Ruivo de Santis, Lucas Silveira Fernandes, Mayra Torres Vasques, Nataly Rabelo Mina Zambrana, Ítallo Emídio Lira Viana, Taís Scaramucci Forlin, Guilherme de Siqueira Ferreira Anzaloni Saavedra, Carlos Eduardo Francci
{"title":"Aging and post-polymerization effects on conversion degree and properties of additive splint materials.","authors":"Leandro Ruivo de Santis, Lucas Silveira Fernandes, Mayra Torres Vasques, Nataly Rabelo Mina Zambrana, Ítallo Emídio Lira Viana, Taís Scaramucci Forlin, Guilherme de Siqueira Ferreira Anzaloni Saavedra, Carlos Eduardo Francci","doi":"10.1590/1807-3107bor-2025.vol39.017","DOIUrl":null,"url":null,"abstract":"<p><p>The study objective was to analyze dimensional change, flexural strength, surface hardness, wear profile, and conversion degree of different additive splint materials under various post-polymerization conditions of time and artificial aging. Two additive manufacturing systems (Cara Print 4.0, Dima Print Ortho, Kulzer; SprintRay Pro, SprintRay Splint, SprintRay), and a thermally activated resin control (Clássico) were evaluated in artificial aging (deionized water or saliva; 28 or 84 days at 37°C), with recommended or doubled post-polymerization cycles. Dimensional change (surface metrology), flexural strength (ISO 20795-1:2013), fractography (SEM), Knoop hardness, two-body wear profilometry (150,000 cycles; 3mmØ; 20N; 2.1Hz), and conversion degree (FTIR spectroscopy) were assessed. Two-way ANOVA and post-hoc Tukey tests were used for parametric data, and Kruskal-Wallis and post-hoc Dunn tests, for non-parametric data (α = 0.05). Results indicated no statistically significant differences in dimensional change or flexural strength among the materials. Recommended post-polymerization cycles resulted in lower hardness for additive resins than the thermally activated control. Doubling post-polymerization time significantly increased flexural strength and hardness of Dima Print Ortho, but decreased flexural strength of SprintRay Splint, and did not affect wear resistance. Dima Print Ortho demonstrated the highest wear resistance. Artificial aging did not affect flexural strength, surface wear, or dimensional change, but negatively impacted the hardness of all materials except Dima Print Ortho. The conversion degree was unaffected by post-polymerization time, and no significant differences were found among the materials. Overall, additive materials exhibited mechanical and dimensional properties comparable to thermally activated resin, with doubling post-polymerization time positively influencing the properties.</p>","PeriodicalId":9240,"journal":{"name":"Brazilian oral research","volume":"39 ","pages":"e017"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian oral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1807-3107bor-2025.vol39.017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

The study objective was to analyze dimensional change, flexural strength, surface hardness, wear profile, and conversion degree of different additive splint materials under various post-polymerization conditions of time and artificial aging. Two additive manufacturing systems (Cara Print 4.0, Dima Print Ortho, Kulzer; SprintRay Pro, SprintRay Splint, SprintRay), and a thermally activated resin control (Clássico) were evaluated in artificial aging (deionized water or saliva; 28 or 84 days at 37°C), with recommended or doubled post-polymerization cycles. Dimensional change (surface metrology), flexural strength (ISO 20795-1:2013), fractography (SEM), Knoop hardness, two-body wear profilometry (150,000 cycles; 3mmØ; 20N; 2.1Hz), and conversion degree (FTIR spectroscopy) were assessed. Two-way ANOVA and post-hoc Tukey tests were used for parametric data, and Kruskal-Wallis and post-hoc Dunn tests, for non-parametric data (α = 0.05). Results indicated no statistically significant differences in dimensional change or flexural strength among the materials. Recommended post-polymerization cycles resulted in lower hardness for additive resins than the thermally activated control. Doubling post-polymerization time significantly increased flexural strength and hardness of Dima Print Ortho, but decreased flexural strength of SprintRay Splint, and did not affect wear resistance. Dima Print Ortho demonstrated the highest wear resistance. Artificial aging did not affect flexural strength, surface wear, or dimensional change, but negatively impacted the hardness of all materials except Dima Print Ortho. The conversion degree was unaffected by post-polymerization time, and no significant differences were found among the materials. Overall, additive materials exhibited mechanical and dimensional properties comparable to thermally activated resin, with doubling post-polymerization time positively influencing the properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.00%
发文量
107
审稿时长
12 weeks
期刊最新文献
Principles of radiological protection and application of ALARA, ALADA, and ALADAIP: a critical review. Carbon fiber-reinforced PEEK as a framework material for single implant-retained mandibular overdentures. Aging and post-polymerization effects on conversion degree and properties of additive splint materials. Impact of polyethylene fiber-reinforced composite resin and thermomechanical cycling on dentin bond strength. Occlusion, acid resistance, and elemental characterization of dentin treated with desensitizing agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1