Effects of Whole-Body Carbon-Ion Beam Irradiation on Bone Marrow Death in Mice and an Examination of Candidates for Protectors or Mitigators against Carbon-Ion-Beam-Induced Bone Marrow Death.
{"title":"Effects of Whole-Body Carbon-Ion Beam Irradiation on Bone Marrow Death in Mice and an Examination of Candidates for Protectors or Mitigators against Carbon-Ion-Beam-Induced Bone Marrow Death.","authors":"Megumi Ueno, Shuichi Setoguchi, Kazuhisa Matsunaga, Ken-Ichiro Matsumoto, Jiro Takata, Kazunori Anzai","doi":"10.1667/RADE-23-00253.1","DOIUrl":null,"url":null,"abstract":"<p><p>The present study examined the effects of whole-body carbon-ion-beam irradiation on bone marrow death in mice and investigated whether compounds/materials, which were identified as efficient radio-protectors or mitigators against X-ray-radiation-induced bone marrow death, were also effective against the carbon-ion-beam-induced death of mice. Amifostine and cysteamine were used as radio-protectors and zinc-containing heat-killed yeast (Zn-yeast) and γ-tocopherol-N,N-dimethylglycine ester (γTDMG) as radio-mitigators. Amifostine or cysteamine was intraperitoneally administered in a single injection of 1.95 mmol/kg body weight 30 min before whole-body carbon-ion-beam irradiation. Zn-yeast or γTDMG was administered in a single intraperitoneal injection of 100 mg/kg body weight immediately after whole-body carbon-ion-beam irradiation. The absorbed dose dependence of the 30-day survival rate after carbon-ion-beam irradiation was analyzed. The biological effectiveness of carbon-ion-beam irradiation (LD50/30 = 5.54 Gy) was estimated as 1.2 relative to X-ray irradiation (LD50/30 = 6.62 Gy). The dose reduction factors (DRF) of amifostine, cysteamine, Zn-yeast, and γTDMG estimated for carbon-ion-beam irradiation were 1.75, 1.53, 1.16, and 1.15, respectively. Radio-protectors and -mitigators that were effective against photon irradiation also exhibited efficacy against carbon-ion-beam irradiation; however, the DRF for carbon-ion-beam irradiation was slightly smaller than that for photon irradiation. Based on the radio-protective effects of amifostine and cysteamine, the contribution of ROS/free radicals to carbon-ion-beam-induced bone marrow death was 70-90% to that of photon irradiation. Since the suppression of tumor growth by carbon-ion-beam irradiation was not inhibited by the treatment with γTDMG or Zn-yeast, both mitigators have potential as normal tissue-selective protectors in carbon-ion irradiation.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00253.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study examined the effects of whole-body carbon-ion-beam irradiation on bone marrow death in mice and investigated whether compounds/materials, which were identified as efficient radio-protectors or mitigators against X-ray-radiation-induced bone marrow death, were also effective against the carbon-ion-beam-induced death of mice. Amifostine and cysteamine were used as radio-protectors and zinc-containing heat-killed yeast (Zn-yeast) and γ-tocopherol-N,N-dimethylglycine ester (γTDMG) as radio-mitigators. Amifostine or cysteamine was intraperitoneally administered in a single injection of 1.95 mmol/kg body weight 30 min before whole-body carbon-ion-beam irradiation. Zn-yeast or γTDMG was administered in a single intraperitoneal injection of 100 mg/kg body weight immediately after whole-body carbon-ion-beam irradiation. The absorbed dose dependence of the 30-day survival rate after carbon-ion-beam irradiation was analyzed. The biological effectiveness of carbon-ion-beam irradiation (LD50/30 = 5.54 Gy) was estimated as 1.2 relative to X-ray irradiation (LD50/30 = 6.62 Gy). The dose reduction factors (DRF) of amifostine, cysteamine, Zn-yeast, and γTDMG estimated for carbon-ion-beam irradiation were 1.75, 1.53, 1.16, and 1.15, respectively. Radio-protectors and -mitigators that were effective against photon irradiation also exhibited efficacy against carbon-ion-beam irradiation; however, the DRF for carbon-ion-beam irradiation was slightly smaller than that for photon irradiation. Based on the radio-protective effects of amifostine and cysteamine, the contribution of ROS/free radicals to carbon-ion-beam-induced bone marrow death was 70-90% to that of photon irradiation. Since the suppression of tumor growth by carbon-ion-beam irradiation was not inhibited by the treatment with γTDMG or Zn-yeast, both mitigators have potential as normal tissue-selective protectors in carbon-ion irradiation.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.