PRMT7 Inhibitor SGC3027 Enhances Radiotherapy Efficacy via Activating ATM Kinase in Non-Small Cell Lung Carcinoma.

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2025-02-28 DOI:10.1667/RADE-24-00242.1
Ya Heng, Feifei Wang, Zhonghui Zhang, Zebang Lin, Dahai Zhao, Qiuling Li
{"title":"PRMT7 Inhibitor SGC3027 Enhances Radiotherapy Efficacy via Activating ATM Kinase in Non-Small Cell Lung Carcinoma.","authors":"Ya Heng, Feifei Wang, Zhonghui Zhang, Zebang Lin, Dahai Zhao, Qiuling Li","doi":"10.1667/RADE-24-00242.1","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small-cell lung cancer (NSCLC) is the leading cause of tumor-related death in humans. Radiotherapy is a crucial strategy for NSCLC treatment, although its effectiveness is limited by the radio-resistance of tumor cells. Our current research finds that the protein arginine methyltransferase 7 (PRMT7) is upregulated in NSCLC and correlates with poor prognosis. Pharmacological inhibition of PRMT7 by SGC3027, a specific small-molecule PRMT7 inhibitor, suppresses the proliferation, migration and invasion of NSCLC. Combining irradiation with SGC3027 strengthens the impact of irradiation on the biological behaviors of NSCLC cells. We also find that SGC3027 specifically activates ATM kinase and its downstream cell cycle checkpoint kinases to enhance radiobiological response in NSCLC. These findings underscore the promising therapeutic potential of PRMT7 inhibitors as well as combining PRMT7 inhibition with irradiation exposure for effective NSCLC therapies.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00242.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small-cell lung cancer (NSCLC) is the leading cause of tumor-related death in humans. Radiotherapy is a crucial strategy for NSCLC treatment, although its effectiveness is limited by the radio-resistance of tumor cells. Our current research finds that the protein arginine methyltransferase 7 (PRMT7) is upregulated in NSCLC and correlates with poor prognosis. Pharmacological inhibition of PRMT7 by SGC3027, a specific small-molecule PRMT7 inhibitor, suppresses the proliferation, migration and invasion of NSCLC. Combining irradiation with SGC3027 strengthens the impact of irradiation on the biological behaviors of NSCLC cells. We also find that SGC3027 specifically activates ATM kinase and its downstream cell cycle checkpoint kinases to enhance radiobiological response in NSCLC. These findings underscore the promising therapeutic potential of PRMT7 inhibitors as well as combining PRMT7 inhibition with irradiation exposure for effective NSCLC therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
PRMT7 Inhibitor SGC3027 Enhances Radiotherapy Efficacy via Activating ATM Kinase in Non-Small Cell Lung Carcinoma. Plasmid DNA Strand Breaks Are Dose Rate Independent at Clinically Relevant Proton Doses and Under Biological Conditions. Systematic Study of Silicon Carbide Detectors and Beam Current Transformer Signals for UHDR Single Electron Pulse Monitoring. Occupational Exposure to Low Dose Ionizing Radiation and the Incidence of Surgically Removed Cataracts and Glaucoma in a Cohort of Ontario Nuclear Power Plant Workers. Effects of Whole-Body Carbon-Ion Beam Irradiation on Bone Marrow Death in Mice and an Examination of Candidates for Protectors or Mitigators against Carbon-Ion-Beam-Induced Bone Marrow Death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1