{"title":"Ghβ-LCY1 influences metabolism and photosynthetic in Gossypium hirsutum","authors":"Yanmin Qian , Yaping Wang , Yu Zhang , Zongyan Chu , Mengxin Shen , Cheng Zhang , Lihua Huang , Zhihua Yang , Kaiwen Ren , Yuanyuan Shi , Tingting Jiao , Baoting Yang , Qiuyue Meng , Yuchen Miao , Jinggong Guo","doi":"10.1016/j.plantsci.2025.112417","DOIUrl":null,"url":null,"abstract":"<div><div>Carotenoids are metabolites of isoprene, which are crucial roles for plant growth and response to abiotic stress. Lycopene β-cyclase (β-LCY) is a key protease in the synthesis pathway of plant carotenoid, playing an important role in the carotenoid metabolism and synthesis pathway. However, the function of β-LCY is almost unknown in cotton (<em>Gossypium spp.</em>). In this study, we cloned the <em>A</em> and <em>D</em> genomes of <em>β-LCY1</em> from upland cotton (<em>Gossypium hirsutum</em>), designated as <em>Ghβ-LCY1A</em> and <em>Ghβ-LCY1D</em>. We found that <em>Ghβ-LCY1A</em> and <em>Ghβ-LCY1D</em> were highly expressed in the cotton leaves and localized in the chloroplasts, respectively. The bacterial pigment complementarity experiment showed that Ghβ-LCY1 has the activity of β-LCY in <em>Escherichia coli</em>. The virus-induced gene silencing (VIGS) analysis exhibited that <em>Ghβ-LCY1</em> silencing cotton plants resulted in a spotted phenotype on the leaves and sepals, slow growth, and stunted plant growth in upland cotton. Additionally, the content of chlorophyll, carotenoids, antheranthun, zeaxanthin, violaxanthin and ABA, were significantly decreased. Under normal light intensity, the chloroplast ultrastructure of leaves in <em>Ghβ-LCY1</em> silencing cotton plants was abnormal, and their photosynthesis (leaf absorptance, Fv/Fm) and non-photochemical quenching (NPQ) were significantly lower than control cotton plants, and this difference was enhanced after high light treatment. Taken together, our results indicate that Ghβ-LCY1 plays an important role in carotenoids metabolism, photosynthesis and participates in plant growth and light protection in cotton.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"353 ","pages":"Article 112417"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000342","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carotenoids are metabolites of isoprene, which are crucial roles for plant growth and response to abiotic stress. Lycopene β-cyclase (β-LCY) is a key protease in the synthesis pathway of plant carotenoid, playing an important role in the carotenoid metabolism and synthesis pathway. However, the function of β-LCY is almost unknown in cotton (Gossypium spp.). In this study, we cloned the A and D genomes of β-LCY1 from upland cotton (Gossypium hirsutum), designated as Ghβ-LCY1A and Ghβ-LCY1D. We found that Ghβ-LCY1A and Ghβ-LCY1D were highly expressed in the cotton leaves and localized in the chloroplasts, respectively. The bacterial pigment complementarity experiment showed that Ghβ-LCY1 has the activity of β-LCY in Escherichia coli. The virus-induced gene silencing (VIGS) analysis exhibited that Ghβ-LCY1 silencing cotton plants resulted in a spotted phenotype on the leaves and sepals, slow growth, and stunted plant growth in upland cotton. Additionally, the content of chlorophyll, carotenoids, antheranthun, zeaxanthin, violaxanthin and ABA, were significantly decreased. Under normal light intensity, the chloroplast ultrastructure of leaves in Ghβ-LCY1 silencing cotton plants was abnormal, and their photosynthesis (leaf absorptance, Fv/Fm) and non-photochemical quenching (NPQ) were significantly lower than control cotton plants, and this difference was enhanced after high light treatment. Taken together, our results indicate that Ghβ-LCY1 plays an important role in carotenoids metabolism, photosynthesis and participates in plant growth and light protection in cotton.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.