{"title":"Long-term Dagum-power variance function frailty regression model: Application in health studies.","authors":"Agatha Sacramento Rodrigues, Patrick Borges","doi":"10.1177/09622802241304113","DOIUrl":null,"url":null,"abstract":"<p><p>Survival models with cure fractions, known as long-term survival models, are widely used in epidemiology to account for both immune and susceptible patients regarding a failure event. In such studies, it is also necessary to estimate unobservable heterogeneity caused by unmeasured prognostic factors. Moreover, the hazard function may exhibit a non-monotonic shape, specifically, an unimodal hazard function. In this article, we propose a long-term survival model based on a defective version of the Dagum distribution, incorporating a power variance function frailty term to account for unobservable heterogeneity. This model accommodates survival data with cure fractions and non-monotonic hazard functions. The distribution is reparameterized in terms of the cure fraction, with covariates linked via a logit link, allowing for direct interpretation of covariate effects on the cure fraction-an uncommon feature in defective approaches. We present maximum likelihood estimation for model parameters, assess performance through Monte Carlo simulations, and illustrate the model's applicability using two health-related datasets: severe COVID-19 in pregnant and postpartum women and patients with malignant skin neoplasms.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241304113"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241304113","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Survival models with cure fractions, known as long-term survival models, are widely used in epidemiology to account for both immune and susceptible patients regarding a failure event. In such studies, it is also necessary to estimate unobservable heterogeneity caused by unmeasured prognostic factors. Moreover, the hazard function may exhibit a non-monotonic shape, specifically, an unimodal hazard function. In this article, we propose a long-term survival model based on a defective version of the Dagum distribution, incorporating a power variance function frailty term to account for unobservable heterogeneity. This model accommodates survival data with cure fractions and non-monotonic hazard functions. The distribution is reparameterized in terms of the cure fraction, with covariates linked via a logit link, allowing for direct interpretation of covariate effects on the cure fraction-an uncommon feature in defective approaches. We present maximum likelihood estimation for model parameters, assess performance through Monte Carlo simulations, and illustrate the model's applicability using two health-related datasets: severe COVID-19 in pregnant and postpartum women and patients with malignant skin neoplasms.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)