Tika R Kafle, Yingchao Zhang, Yi-Yan Wang, Xun Shi, Na Li, Richa Sapkota, Jeremy Thurston, Wenjing You, Shunye Gao, Qingxin Dong, Kai Rossnagel, Gen-Fu Chen, James Freericks, Henry C Kapteyn, Margaret M Murnane
{"title":"Non-equilibrium states and interactions in the topological insulator and topological crystalline insulator phases of NaCd<sub>4</sub>As<sub>3</sub>.","authors":"Tika R Kafle, Yingchao Zhang, Yi-Yan Wang, Xun Shi, Na Li, Richa Sapkota, Jeremy Thurston, Wenjing You, Shunye Gao, Qingxin Dong, Kai Rossnagel, Gen-Fu Chen, James Freericks, Henry C Kapteyn, Margaret M Murnane","doi":"10.1063/4.0000273","DOIUrl":null,"url":null,"abstract":"<p><p>Topological materials are of great interest because they can support metallic edge or surface states that are robust against perturbations, with the potential for technological applications. Here, we experimentally explore the light-induced non-equilibrium properties of two distinct topological phases in NaCd<sub>4</sub>As<sub>3</sub>: a topological crystalline insulator (TCI) phase and a topological insulator (TI) phase. This material has surface states that are protected by mirror symmetry in the TCI phase at room temperature, while it undergoes a structural phase transition to a TI phase below 200 K. After exciting the TI phase by an ultrafast laser pulse, we observe a leading band edge shift of >150 meV that slowly builds up and reaches a maximum after ∼0.6 ps and that persists for ∼8 ps. The slow rise time of the excited electron population and electron temperature suggests that the electronic and structural orders are strongly coupled in this TI phase. It also suggests that the directly excited electronic states and the probed electronic states are weakly coupled. Both couplings are likely due to a partial relaxation of the lattice distortion, which is known to be associated with the TI phase. In contrast, no distinct excited state is observed in the TCI phase immediately or after photoexcitation, which we attribute to the low density of states and phase space available near the Fermi level. Our results show how ultrafast laser excitation can reveal the distinct excited states and interactions in phase-rich topological materials.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 1","pages":"014501"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000273","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Topological materials are of great interest because they can support metallic edge or surface states that are robust against perturbations, with the potential for technological applications. Here, we experimentally explore the light-induced non-equilibrium properties of two distinct topological phases in NaCd4As3: a topological crystalline insulator (TCI) phase and a topological insulator (TI) phase. This material has surface states that are protected by mirror symmetry in the TCI phase at room temperature, while it undergoes a structural phase transition to a TI phase below 200 K. After exciting the TI phase by an ultrafast laser pulse, we observe a leading band edge shift of >150 meV that slowly builds up and reaches a maximum after ∼0.6 ps and that persists for ∼8 ps. The slow rise time of the excited electron population and electron temperature suggests that the electronic and structural orders are strongly coupled in this TI phase. It also suggests that the directly excited electronic states and the probed electronic states are weakly coupled. Both couplings are likely due to a partial relaxation of the lattice distortion, which is known to be associated with the TI phase. In contrast, no distinct excited state is observed in the TCI phase immediately or after photoexcitation, which we attribute to the low density of states and phase space available near the Fermi level. Our results show how ultrafast laser excitation can reveal the distinct excited states and interactions in phase-rich topological materials.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.