Operando Electrochemical and Optical Characterization of the Meniscus of Scanning Electrochemical Cell Microscopy (SECCM) Probes.

ACS electrochemistry Pub Date : 2024-10-07 eCollection Date: 2025-02-06 DOI:10.1021/acselectrochem.4c00029
Dimitrios Valavanis, Paolo Ciocci, Ian J McPherson, Gabriel N Meloni, Jean-François Lemineur, Frédéric Kanoufi, Patrick R Unwin
{"title":"<i>Operando</i> Electrochemical and Optical Characterization of the Meniscus of Scanning Electrochemical Cell Microscopy (SECCM) Probes.","authors":"Dimitrios Valavanis, Paolo Ciocci, Ian J McPherson, Gabriel N Meloni, Jean-François Lemineur, Frédéric Kanoufi, Patrick R Unwin","doi":"10.1021/acselectrochem.4c00029","DOIUrl":null,"url":null,"abstract":"<p><p>We present a thorough description of the scanning electrochemical cell microscopy (SECCM) meniscus probe, in operation, by combining dual-channel SECCM measurements with <i>in situ</i> interference reflection microscopy (IRM). SECCM is a pipette-based nanoscale characterization tool with an unparalleled capacity for mapping the electrochemical activity of material surfaces, with high precision and at high throughput. In hopping mode, it operates by bringing the electrolyte meniscus, at the scanned pipette tip, in contact with the sample, restricting the probed area each time to a separate, newly wetted site, and forming a small-scale reactor. Each contact area can normally be imaged post-experiment, to inform on the wetted area stability and enable quantitative data interpretation (e.g., to calculate current density). However, the description of meniscus behavior during measurements would be beneficial. Herein, we utilize semi-transparent electrode substrates, to enable the direct optical observation, by IRM, of the meniscus status, with high spatial and temporal resolution, and synchronously to SECCM operation. The surface-sensitive optical method allows us to accurately capture the nature of the miniature electrochemical cell during all phases of the experiment-during approach, meniscus contact, wetting, and pipette withdrawal-and to follow subtle changes while in contact with the electrode substrate. Through the use of a dual-channel probe, we are able to monitor both the ionic current across the meniscus, between quasi-reference counter electrodes (QRCEs) under bias, and between the working electrode surface and the QRCEs. Correlating these electrochemical data and <i>operando</i> optical information via the hybrid SECCM-IRM approach aids the design of experimental protocols, streamlines the interpretation of results, and paints a comprehensive picture of meniscus wetting behavior.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 2","pages":"153-163"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a thorough description of the scanning electrochemical cell microscopy (SECCM) meniscus probe, in operation, by combining dual-channel SECCM measurements with in situ interference reflection microscopy (IRM). SECCM is a pipette-based nanoscale characterization tool with an unparalleled capacity for mapping the electrochemical activity of material surfaces, with high precision and at high throughput. In hopping mode, it operates by bringing the electrolyte meniscus, at the scanned pipette tip, in contact with the sample, restricting the probed area each time to a separate, newly wetted site, and forming a small-scale reactor. Each contact area can normally be imaged post-experiment, to inform on the wetted area stability and enable quantitative data interpretation (e.g., to calculate current density). However, the description of meniscus behavior during measurements would be beneficial. Herein, we utilize semi-transparent electrode substrates, to enable the direct optical observation, by IRM, of the meniscus status, with high spatial and temporal resolution, and synchronously to SECCM operation. The surface-sensitive optical method allows us to accurately capture the nature of the miniature electrochemical cell during all phases of the experiment-during approach, meniscus contact, wetting, and pipette withdrawal-and to follow subtle changes while in contact with the electrode substrate. Through the use of a dual-channel probe, we are able to monitor both the ionic current across the meniscus, between quasi-reference counter electrodes (QRCEs) under bias, and between the working electrode surface and the QRCEs. Correlating these electrochemical data and operando optical information via the hybrid SECCM-IRM approach aids the design of experimental protocols, streamlines the interpretation of results, and paints a comprehensive picture of meniscus wetting behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of the Ionomer in Supporting Electrolyte-Fed Anion Exchange Membrane Water Electrolyzers. Droplet-Confined Electroplating for Nanoscale Additive Manufacturing: Current Control of the Initial Stages of Growth of Copper Nanowires. Optically Transparent Carbon Electrodes for Single Entity Electrochemistry. Operando Electrochemical and Optical Characterization of the Meniscus of Scanning Electrochemical Cell Microscopy (SECCM) Probes. Redox-Detecting Deep Learning for Mechanism Discernment in Cyclic Voltammograms of Multiple Redox Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1