首页 > 最新文献

ACS electrochemistry最新文献

英文 中文
Optically Transparent Carbon Electrodes for Single Entity Electrochemistry.
Pub Date : 2024-10-08 eCollection Date: 2025-01-02 DOI: 10.1021/acselectrochem.4c00048
Kelly L Vernon, Tipsiri Pungsrisai, Oluwasegun J Wahab, Sasha E Alden, Yaxu Zhong, Myung-Hoon Choi, Ekta Verma, Anne K Bentley, Kathleen O Bailey, Sara E Skrabalak, Xingchen Ye, Katherine A Willets, Lane A Baker

We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry. Nanoscale electrochemical imaging of the OTCEs using scanning electrochemical cell microscopy (SECCM) revealed uniform electrochemical activity for reduction of the hexaammineruthenium(III) redox complex, that was comparable to Au-coated glass, and in contrast to the heterogeneity observed with commonly used indium tin oxide (ITO) substrates. Additionally, we demonstrate the utility of the prepared OTCEs for correlative SECCM-scanning electron microscopy studies of the hydrogen evolution reaction at the surface of Au nanocubes. Lastly, we demonstrate the benefit of OTCEs for optoelectrochemical experiments by optically monitoring the electrodissolution of Au nanocrystals. These results establish OTCE as a viable transparent support electrode for multimode electrochemical and optical microscopy of nanocrystals and other entities.

{"title":"Optically Transparent Carbon Electrodes for Single Entity Electrochemistry.","authors":"Kelly L Vernon, Tipsiri Pungsrisai, Oluwasegun J Wahab, Sasha E Alden, Yaxu Zhong, Myung-Hoon Choi, Ekta Verma, Anne K Bentley, Kathleen O Bailey, Sara E Skrabalak, Xingchen Ye, Katherine A Willets, Lane A Baker","doi":"10.1021/acselectrochem.4c00048","DOIUrl":"10.1021/acselectrochem.4c00048","url":null,"abstract":"<p><p>We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry. Nanoscale electrochemical imaging of the OTCEs using scanning electrochemical cell microscopy (SECCM) revealed uniform electrochemical activity for reduction of the hexaammineruthenium(III) redox complex, that was comparable to Au-coated glass, and in contrast to the heterogeneity observed with commonly used indium tin oxide (ITO) substrates. Additionally, we demonstrate the utility of the prepared OTCEs for correlative SECCM-scanning electron microscopy studies of the hydrogen evolution reaction at the surface of Au nanocubes. Lastly, we demonstrate the benefit of OTCEs for optoelectrochemical experiments by optically monitoring the electrodissolution of Au nanocrystals. These results establish OTCE as a viable transparent support electrode for multimode electrochemical and optical microscopy of nanocrystals and other entities.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 1","pages":"93-102"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-Detecting Deep Learning for Mechanism Discernment in Cyclic Voltammograms of Multiple Redox Events.
Pub Date : 2024-10-03 eCollection Date: 2025-01-02 DOI: 10.1021/acselectrochem.4c00014
Benjamin B Hoar, Weitong Zhang, Yuanzhou Chen, Jingwen Sun, Hongyuan Sheng, Yucheng Zhang, Yisi Chen, Jenny Y Yang, Cyrille Costentin, Quanquan Gu, Chong Liu

In electrochemical analysis, mechanism assignment is fundamental to understanding the chemistry of a system. The detection and classification of electrochemical mechanisms in cyclic voltammetry set the foundation for subsequent quantitative evaluation and practical application, but are often based on relatively subjective visual analyses. Deep-learning (DL) techniques provide an alternative, automated means that can support experimentalists in mechanism assignment. Herein, we present a custom DL architecture dubbed as EchemNet, capable of assigning both voltage windows and mechanism classes to electrochemical events within cyclic voltammograms of multiple redox events. The developed technique detects over 96% of all electrochemical events in simulated test data and shows a classification accuracy of up to 97.2% on redox events with 8 known mechanisms. This newly developed DL model, the first of its kind, proves the feasibility of redox-event detection and electrochemical mechanism classification with minimal a priori knowledge. The DL model will augment human researchers' productivity and constitute a critical component in a general-purpose autonomous electrochemistry laboratory.

{"title":"Redox-Detecting Deep Learning for Mechanism Discernment in Cyclic Voltammograms of Multiple Redox Events.","authors":"Benjamin B Hoar, Weitong Zhang, Yuanzhou Chen, Jingwen Sun, Hongyuan Sheng, Yucheng Zhang, Yisi Chen, Jenny Y Yang, Cyrille Costentin, Quanquan Gu, Chong Liu","doi":"10.1021/acselectrochem.4c00014","DOIUrl":"10.1021/acselectrochem.4c00014","url":null,"abstract":"<p><p>In electrochemical analysis, mechanism assignment is fundamental to understanding the chemistry of a system. The detection and classification of electrochemical mechanisms in cyclic voltammetry set the foundation for subsequent quantitative evaluation and practical application, but are often based on relatively subjective visual analyses. Deep-learning (DL) techniques provide an alternative, automated means that can support experimentalists in mechanism assignment. Herein, we present a custom DL architecture dubbed as EchemNet, capable of assigning both voltage windows and mechanism classes to electrochemical events within cyclic voltammograms of multiple redox events. The developed technique detects over 96% of all electrochemical events in simulated test data and shows a classification accuracy of up to 97.2% on redox events with 8 known mechanisms. This newly developed DL model, the first of its kind, proves the feasibility of redox-event detection and electrochemical mechanism classification with minimal <i>a priori</i> knowledge. The DL model will augment human researchers' productivity and constitute a critical component in a general-purpose autonomous electrochemistry laboratory.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 1","pages":"52-62"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.
Pub Date : 2024-10-03 eCollection Date: 2025-01-02 DOI: 10.1021/acselectrochem.4c00040
Hansaem Jang, Adrian M Gardner, Lucy J Walters, Alex R Neale, Laurence J Hardwick, Alexander J Cowan

Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO2 reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions. At potentials negative of a critical potential, a cationic surfactant adsorbs onto the electrode surface, displacing interfacial water molecules, hampering the access of proton donors to the electrode surface and inhibiting hydrogen evolution during electrolysis.

{"title":"The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.","authors":"Hansaem Jang, Adrian M Gardner, Lucy J Walters, Alex R Neale, Laurence J Hardwick, Alexander J Cowan","doi":"10.1021/acselectrochem.4c00040","DOIUrl":"10.1021/acselectrochem.4c00040","url":null,"abstract":"<p><p>Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO<sub>2</sub> reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions. At potentials negative of a critical potential, a cationic surfactant adsorbs onto the electrode surface, displacing interfacial water molecules, hampering the access of proton donors to the electrode surface and inhibiting hydrogen evolution during electrolysis.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 1","pages":"20-24"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1