{"title":"Exploring the soft cradle effect and ionic transport mechanisms in the LiMXCl4 superionic conductor family","authors":"KyuJung Jun, Grace Wei, Xiaochen Yang, Yu Chen, Gerbrand Ceder","doi":"10.1016/j.matt.2025.102001","DOIUrl":null,"url":null,"abstract":"LiMXCl<sub>4</sub>, a recently discovered lithium superionic conductor, achieves Li conductivity up to 12.4 mS/cm at room temperature. Notably, LiNbOCl<sub>4</sub> features flexible, rotating polyhedra, potentially explaining its high ionic conductivity. However, the generalizability of these findings across different chemistries and the direct link between polyhedra rotations and Li-ion mobility remain unclear. In this study, we explore various M-cation and X-anion substitutions in the LiMXCl<sub>4</sub> system, identifying fluoro-chlorides as promising for enhancing electrochemical stability while maintaining high ionic conductivity. Meyer-Neldel analysis on <em>ab initio</em> simulations reveals that LiMXCl<sub>4</sub> outperforms existing halide conductors, with projected conductivities of 10–100 mS/cm. Our probabilistic analysis of lithium-ion hops and small-angle tilting events reveals a “soft cradle effect,” where weakly bound M-octahedra tilt in conjunction with Li-ion hops, optimizing the energy landscape. This work provides fundamental insights into the factors driving high ionic conductivity in non-close-packed oxyhalide systems and suggests exciting directions for further improving these materials.","PeriodicalId":388,"journal":{"name":"Matter","volume":"30 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
LiMXCl4, a recently discovered lithium superionic conductor, achieves Li conductivity up to 12.4 mS/cm at room temperature. Notably, LiNbOCl4 features flexible, rotating polyhedra, potentially explaining its high ionic conductivity. However, the generalizability of these findings across different chemistries and the direct link between polyhedra rotations and Li-ion mobility remain unclear. In this study, we explore various M-cation and X-anion substitutions in the LiMXCl4 system, identifying fluoro-chlorides as promising for enhancing electrochemical stability while maintaining high ionic conductivity. Meyer-Neldel analysis on ab initio simulations reveals that LiMXCl4 outperforms existing halide conductors, with projected conductivities of 10–100 mS/cm. Our probabilistic analysis of lithium-ion hops and small-angle tilting events reveals a “soft cradle effect,” where weakly bound M-octahedra tilt in conjunction with Li-ion hops, optimizing the energy landscape. This work provides fundamental insights into the factors driving high ionic conductivity in non-close-packed oxyhalide systems and suggests exciting directions for further improving these materials.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.