Bongki Shin, Bo Ni, Chee-Tat Toh, Doug Steinbach, Zhenze Yang, Lucas M. Sassi, Qing Ai, Kangdi Niu, Junhao Lin, Kazu Suenaga, Yimo Han, Markus J. Buehler, Barbaros Özyilmaz, Jun Lou
{"title":"Intrinsic toughening in monolayer amorphous carbon nanocomposites","authors":"Bongki Shin, Bo Ni, Chee-Tat Toh, Doug Steinbach, Zhenze Yang, Lucas M. Sassi, Qing Ai, Kangdi Niu, Junhao Lin, Kazu Suenaga, Yimo Han, Markus J. Buehler, Barbaros Özyilmaz, Jun Lou","doi":"10.1016/j.matt.2025.102000","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials have immense potential to advance flexible electronics, yet they are limited by low fracture toughness. This study addresses the intrinsic toughening of monolayer amorphous carbon (MAC), a 2D nanocomposite, to overcome this challenge. By incorporating both amorphous and nanocrystalline phases, MAC significantly enhances energy absorption during fracture propagation, as evidenced by crack blunting, deflecting, and bridging. Using <em>in situ</em> tensile tests under a scanning electron microscope, our results indicate an 8-fold increase in the energy release rate compared to monolayer graphene, along with improved fracture strain and crack stability. Molecular dynamics simulations demonstrate the impact of phase composition on fracture energy. Our results present a scalable toughening strategy for 2D materials, potentially broadening their applications in fields requiring robust fracture resistance.","PeriodicalId":388,"journal":{"name":"Matter","volume":"4 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102000","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials have immense potential to advance flexible electronics, yet they are limited by low fracture toughness. This study addresses the intrinsic toughening of monolayer amorphous carbon (MAC), a 2D nanocomposite, to overcome this challenge. By incorporating both amorphous and nanocrystalline phases, MAC significantly enhances energy absorption during fracture propagation, as evidenced by crack blunting, deflecting, and bridging. Using in situ tensile tests under a scanning electron microscope, our results indicate an 8-fold increase in the energy release rate compared to monolayer graphene, along with improved fracture strain and crack stability. Molecular dynamics simulations demonstrate the impact of phase composition on fracture energy. Our results present a scalable toughening strategy for 2D materials, potentially broadening their applications in fields requiring robust fracture resistance.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.