Jingjing Gao , Mingqi Liu , Maomin Qian , Heping Tang , Junyi Wang , Liang Ma , Yanling Li , Xin Dai , Zhengning Wang , Fengmei Lu , Fan Zhang
{"title":"Fine-scale striatal parcellation using diffusion MRI tractography and graph neural networks","authors":"Jingjing Gao , Mingqi Liu , Maomin Qian , Heping Tang , Junyi Wang , Liang Ma , Yanling Li , Xin Dai , Zhengning Wang , Fengmei Lu , Fan Zhang","doi":"10.1016/j.media.2025.103482","DOIUrl":null,"url":null,"abstract":"<div><div>The striatum, a crucial part of the basal ganglia, plays a key role in various brain functions through its interactions with the cortex. The complex structural and functional diversity across subdivisions within the striatum highlights the necessity for precise striatal segmentation. In this study, we introduce a novel deep clustering pipeline for automated, fine-scale parcellation of the striatum using diffusion MRI (dMRI) tractography. Initially, we employ a voxel-based probabilistic fiber tractography algorithm combined with a fiber-tract embedding technique to capture intricate dMRI connectivity patterns. To maintain critical inter-voxel relationships, our approach employs Graph Neural Networks (GNNs) to create accurate graph representations of the striatum. This involves encoding probabilistic fiber bundle characteristics as node attributes and refining edge weights using activation functions to enhance the graph’s interpretability and accuracy. The methodology incorporates a Transformer-based GraphConv autoencoder in the pre-training phase to extract critical spatial features while minimizing reconstruction loss. In the fine-tuning phase, a novel joint loss mechanism markedly improves segmentation precision and anatomical fidelity. Integration of traditional clustering techniques with multi-head self-attention mechanisms further elevates the accuracy and robustness of our segmentation approach. This methodology provides new insights into the striatum’s role in cognition and behavior and offers potential clinical applications for neurological disorders.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103482"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000301","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The striatum, a crucial part of the basal ganglia, plays a key role in various brain functions through its interactions with the cortex. The complex structural and functional diversity across subdivisions within the striatum highlights the necessity for precise striatal segmentation. In this study, we introduce a novel deep clustering pipeline for automated, fine-scale parcellation of the striatum using diffusion MRI (dMRI) tractography. Initially, we employ a voxel-based probabilistic fiber tractography algorithm combined with a fiber-tract embedding technique to capture intricate dMRI connectivity patterns. To maintain critical inter-voxel relationships, our approach employs Graph Neural Networks (GNNs) to create accurate graph representations of the striatum. This involves encoding probabilistic fiber bundle characteristics as node attributes and refining edge weights using activation functions to enhance the graph’s interpretability and accuracy. The methodology incorporates a Transformer-based GraphConv autoencoder in the pre-training phase to extract critical spatial features while minimizing reconstruction loss. In the fine-tuning phase, a novel joint loss mechanism markedly improves segmentation precision and anatomical fidelity. Integration of traditional clustering techniques with multi-head self-attention mechanisms further elevates the accuracy and robustness of our segmentation approach. This methodology provides new insights into the striatum’s role in cognition and behavior and offers potential clinical applications for neurological disorders.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.