A survey of intracranial aneurysm detection and segmentation

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-02-11 DOI:10.1016/j.media.2025.103493
Wei-Chan Hsu , Monique Meuschke , Alejandro F. Frangi , Bernhard Preim , Kai Lawonn
{"title":"A survey of intracranial aneurysm detection and segmentation","authors":"Wei-Chan Hsu ,&nbsp;Monique Meuschke ,&nbsp;Alejandro F. Frangi ,&nbsp;Bernhard Preim ,&nbsp;Kai Lawonn","doi":"10.1016/j.media.2025.103493","DOIUrl":null,"url":null,"abstract":"<div><div>Intracranial aneurysms (IAs) are a critical public health concern: they are asymptomatic and can lead to fatal subarachnoid hemorrhage in case of rupture. Neuroradiologists rely on advanced imaging techniques to identify aneurysms in a patient and consider the characteristics of IAs along with several other patient-related factors for rupture risk assessment and treatment decision-making. The process of diagnostic image reading is time-intensive and prone to inter- and intra-individual variations, so researchers have proposed many computer-aided diagnosis (CAD) systems for aneurysm detection and segmentation. This paper provides a comprehensive literature survey of semi-automated and automated approaches for IA detection and segmentation and proposes a taxonomy to classify the approaches. We also discuss the current issues and give some insight into the future direction of CAD systems for IA detection and segmentation.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103493"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000416","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Intracranial aneurysms (IAs) are a critical public health concern: they are asymptomatic and can lead to fatal subarachnoid hemorrhage in case of rupture. Neuroradiologists rely on advanced imaging techniques to identify aneurysms in a patient and consider the characteristics of IAs along with several other patient-related factors for rupture risk assessment and treatment decision-making. The process of diagnostic image reading is time-intensive and prone to inter- and intra-individual variations, so researchers have proposed many computer-aided diagnosis (CAD) systems for aneurysm detection and segmentation. This paper provides a comprehensive literature survey of semi-automated and automated approaches for IA detection and segmentation and proposes a taxonomy to classify the approaches. We also discuss the current issues and give some insight into the future direction of CAD systems for IA detection and segmentation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Neighbor-aware calibration of segmentation networks with penalty-based constraints From challenges and pitfalls to recommendations and opportunities: Implementing federated learning in healthcare A-Eval: A benchmark for cross-dataset and cross-modality evaluation of abdominal multi-organ segmentation A survey of intracranial aneurysm detection and segmentation Learning robust medical image segmentation from multi-source annotations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1