DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2025-02-10 DOI:10.1016/j.ecoinf.2025.103067
Xiao Chen , Xinting Yang , Huan Hu , Tianjun Li , Zijie Zhou , Wenyong Li
{"title":"DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring","authors":"Xiao Chen ,&nbsp;Xinting Yang ,&nbsp;Huan Hu ,&nbsp;Tianjun Li ,&nbsp;Zijie Zhou ,&nbsp;Wenyong Li","doi":"10.1016/j.ecoinf.2025.103067","DOIUrl":null,"url":null,"abstract":"<div><div>Insect pest detection plays a crucial role in agricultural production for accurate and early pest control, thus significantly reducing crop damage and increasing yields. However, currently the small size and multi-scale characteristics of insect pests pose significant challenges for accurate object detection using computer vision technology. To address this issue, we propose a novel framework called DAMI-YOLOv8l to detect pest in images collected by a light-trapping device. The DAMI-YOLOv8l model integrates three key innovations: the Depth-wise Multi-Scale Convolution (DMC) module, the Attentional Scale Sequence Fusion with a P2 detection layer (ASF<img>P2) neck structure, and a novel bounding box regression loss function named Minimum Point Distance inner Intersection over Union (MPDinner-IoU). The DMC module improves multi-scale feature extraction to enable the effective capture and merging of features across different detection scales while reducing network parameters. The ASF-P2 neck structure enhances the fusion of multi-scale features while preserving critical local information related to small-scale features. Additionally, the MPDinner-IoU loss function optimizes feature measurement for small insect pest datasets by introducing geometric correction capabilities. By leveraging these innovations, the results demonstrate that the proposed framework improves many metrics, such as mAP<sub>50</sub> from 74.5 % to 78.2 %, mAP<sub>50:95</sub> from 52.5 % to 57.3 %, and FPS from 109.89 to 121.12, compared with those of YOLOv8l model on the proposed LP24 dataset. Furthermore, we validate its robustness on two other public datasets related to small objects, Pest24 and VisDrone2019.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103067"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000767","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insect pest detection plays a crucial role in agricultural production for accurate and early pest control, thus significantly reducing crop damage and increasing yields. However, currently the small size and multi-scale characteristics of insect pests pose significant challenges for accurate object detection using computer vision technology. To address this issue, we propose a novel framework called DAMI-YOLOv8l to detect pest in images collected by a light-trapping device. The DAMI-YOLOv8l model integrates three key innovations: the Depth-wise Multi-Scale Convolution (DMC) module, the Attentional Scale Sequence Fusion with a P2 detection layer (ASFP2) neck structure, and a novel bounding box regression loss function named Minimum Point Distance inner Intersection over Union (MPDinner-IoU). The DMC module improves multi-scale feature extraction to enable the effective capture and merging of features across different detection scales while reducing network parameters. The ASF-P2 neck structure enhances the fusion of multi-scale features while preserving critical local information related to small-scale features. Additionally, the MPDinner-IoU loss function optimizes feature measurement for small insect pest datasets by introducing geometric correction capabilities. By leveraging these innovations, the results demonstrate that the proposed framework improves many metrics, such as mAP50 from 74.5 % to 78.2 %, mAP50:95 from 52.5 % to 57.3 %, and FPS from 109.89 to 121.12, compared with those of YOLOv8l model on the proposed LP24 dataset. Furthermore, we validate its robustness on two other public datasets related to small objects, Pest24 and VisDrone2019.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia Mapping spatiotemporal mortality patterns in spruce mountain forests using Sentinel-2 data and environmental factors Advancing Sika deer detection and distance estimation through comprehensive camera calibration and distortion analysis DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring Deep sea spy: An online citizen science annotation platform for science and ocean literacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1