Development of tridymite structure studied through crystal growth by X-ray diffraction: Influence of synthesis parameters

IF 2.7 4区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Boletin de la Sociedad Espanola de Ceramica y Vidrio Pub Date : 2025-01-01 DOI:10.1016/j.bsecv.2024.10.004
Jessica Gilabert, Eva María Díaz-Canales, Eulalia Zumaquero, M.a Fernanda Gazulla, Encarna Blasco, Mª Pilar Gómez-Tena
{"title":"Development of tridymite structure studied through crystal growth by X-ray diffraction: Influence of synthesis parameters","authors":"Jessica Gilabert,&nbsp;Eva María Díaz-Canales,&nbsp;Eulalia Zumaquero,&nbsp;M.a Fernanda Gazulla,&nbsp;Encarna Blasco,&nbsp;Mª Pilar Gómez-Tena","doi":"10.1016/j.bsecv.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis progression of the crystalline silica polymorph tridymite has been investigated through the crystallization evolution using X-ray diffraction (XRD) technique. The impact of various synthesis variables on the crystallization of tridymite was examined, including the crystallinity of the raw material, the type and concentration of the mineralizer used, as well as the effect of the maximum furnace temperature and soaking time. The evolution of the crystal structure was analyzed using X-ray diffraction, and the best-synthesized final product was characterized by X-ray fluorescence, scanning electron microscopy and specific surface area. Due to the inherently sluggish nature of the tridymite transition, it was not possible to synthesize tridymite without the presence of an alkali in the composition. While all the variables studied influenced the synthesis of tridymite to some extent, the concentration and nature of the nucleation agent were identified as the key parameters to optimize the synthesis process. As a result of this research, a synthetic silica product with high crystalline tridymite phase content was successfully obtained, which could be deemed suitable for use as a secondary reference material in the quantification of crystalline silica, given the lack of reference materials for this kind of structure.</div></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"64 1","pages":"Pages 45-56"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317524000414","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis progression of the crystalline silica polymorph tridymite has been investigated through the crystallization evolution using X-ray diffraction (XRD) technique. The impact of various synthesis variables on the crystallization of tridymite was examined, including the crystallinity of the raw material, the type and concentration of the mineralizer used, as well as the effect of the maximum furnace temperature and soaking time. The evolution of the crystal structure was analyzed using X-ray diffraction, and the best-synthesized final product was characterized by X-ray fluorescence, scanning electron microscopy and specific surface area. Due to the inherently sluggish nature of the tridymite transition, it was not possible to synthesize tridymite without the presence of an alkali in the composition. While all the variables studied influenced the synthesis of tridymite to some extent, the concentration and nature of the nucleation agent were identified as the key parameters to optimize the synthesis process. As a result of this research, a synthetic silica product with high crystalline tridymite phase content was successfully obtained, which could be deemed suitable for use as a secondary reference material in the quantification of crystalline silica, given the lack of reference materials for this kind of structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Boletin de la Sociedad Espanola de Ceramica y Vidrio
Boletin de la Sociedad Espanola de Ceramica y Vidrio 工程技术-材料科学:硅酸盐
CiteScore
5.50
自引率
2.90%
发文量
72
审稿时长
103 days
期刊介绍: The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.
期刊最新文献
Development of tridymite structure studied through crystal growth by X-ray diffraction: Influence of synthesis parameters Obtaining characterization and in vitro behavior of 3D multilayer ceramic scaffolds Ca2SiO4/Ca2P6O17/Ca2SiO4-XSr Inteligencia artificial y materiales II Optimization of ceramic proppant properties through an innovative coating approach Compósitos de Ca349-Sr/Ag como material para aplicaciones termoeléctricas de baja temperatura
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1