Karina Salazar , Ángel Murciano , Pablo Velásquez , Piedad N. De Aza
{"title":"Obtaining characterization and in vitro behavior of 3D multilayer ceramic scaffolds Ca2SiO4/Ca2P6O17/Ca2SiO4-XSr","authors":"Karina Salazar , Ángel Murciano , Pablo Velásquez , Piedad N. De Aza","doi":"10.1016/j.bsecv.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, 3D multilayer scaffolds were fabricated by sol–gel and polymeric replication methods. The principal objective was to fabricate scaffolds based on a core of Ca<sub>2</sub>SiO4/Ca<sub>2</sub>P<sub>6</sub>O<sub>17</sub> (C<sub>2</sub>S/P<sub>6</sub>) to obtain mechanical resistance following by external layers with composition Ca<sub>2</sub>SiO<sub>4</sub> (C<sub>2</sub>S) doped with several amount of SrCO<sub>3</sub> (Sr<!--> <!-->=<!--> <!-->0–2.5<!--> <!-->wt%) to generate modulated bioactivity.</div><div>This scaffold was characterized from the physical, chemical and mineralogical point of view. Finally, the effect of the dopant on the surface morphology and how it affects the bioactivity was carried out according to the ISO 23317.2017 standard.</div><div>The obtained scaffolds exhibited an open porosity of 80–90% and a maximum mechanical strength of 1.2<!--> <!-->±<!--> <!-->0.1<!--> <!-->MPa. The scaffolds containing Sr<sup>2+</sup> demonstrated bioactivity that could be modulated according to the Sr content. The results revealed that bioactivity occurred only when the scaffolds were coated with outer layers of strontium. Scaffolds doped with 1 and 1.5<!--> <!-->wt% Sr displayed bioactivity after 3 days in simulated body fluid (SBF), while the 2.5<!--> <!-->wt% Sr sample did not show bioactivity at any time.</div></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"64 1","pages":"Pages 57-68"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317524000475","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, 3D multilayer scaffolds were fabricated by sol–gel and polymeric replication methods. The principal objective was to fabricate scaffolds based on a core of Ca2SiO4/Ca2P6O17 (C2S/P6) to obtain mechanical resistance following by external layers with composition Ca2SiO4 (C2S) doped with several amount of SrCO3 (Sr = 0–2.5 wt%) to generate modulated bioactivity.
This scaffold was characterized from the physical, chemical and mineralogical point of view. Finally, the effect of the dopant on the surface morphology and how it affects the bioactivity was carried out according to the ISO 23317.2017 standard.
The obtained scaffolds exhibited an open porosity of 80–90% and a maximum mechanical strength of 1.2 ± 0.1 MPa. The scaffolds containing Sr2+ demonstrated bioactivity that could be modulated according to the Sr content. The results revealed that bioactivity occurred only when the scaffolds were coated with outer layers of strontium. Scaffolds doped with 1 and 1.5 wt% Sr displayed bioactivity after 3 days in simulated body fluid (SBF), while the 2.5 wt% Sr sample did not show bioactivity at any time.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.