M.L. Puertas , J.F. Bartolomé , A. Esteban-Cubillo
{"title":"Synergistically ceramization of rubber system for fire safety cable by sepiolite functionalized with boron-based nanoparticles","authors":"M.L. Puertas , J.F. Bartolomé , A. Esteban-Cubillo","doi":"10.1016/j.bsecv.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a novel ethylene propylene diene monomer rubber (EPDM) formulation for cable with high ceramization efficiency was prepared by the addition of functionalized sepiolite with boron fluxing compound nanoparticles (SEPTB) obtained by precipitation route. Non-functionalized sepiolite (SEP) has been incorporated to the system for reference. EPDM materials were characterized by standardized tests measuring their behavior against fire and important improvements were observed, especially in terms of smoke production (25% reduction of the smoke production compared with the formulation using SEP) presenting a remarkable behaviour against dripping and self-extinction when a flame is directly applied. The mechanism of ceramization under fire conditions was discussed. It was found that EPDM system with SEPTB additive transformed into a rigid ceramic after treating at 1000<!--> <!-->°C. In this particular case, the ceramization was more efficient due to the sepiolite transformation to enstatite at lower temperatures (∼750 vs ∼850<!--> <!-->°C) combined with the “in situ” formation of a glassy phase which notably enhances the reinforcement of the char layer by forming a reinforcing 3D enstatite fibers net structure that reduces smoke production and even totally avoids the dripping of melted polymer by the action of the heat in a fire event. This work provides new insights for the preparation of high-performance synergist additive based on sepiolite for the enhancement of fire retardance of EPDM system for cable applications.</div></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"64 1","pages":"Pages 33-44"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317524000360","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a novel ethylene propylene diene monomer rubber (EPDM) formulation for cable with high ceramization efficiency was prepared by the addition of functionalized sepiolite with boron fluxing compound nanoparticles (SEPTB) obtained by precipitation route. Non-functionalized sepiolite (SEP) has been incorporated to the system for reference. EPDM materials were characterized by standardized tests measuring their behavior against fire and important improvements were observed, especially in terms of smoke production (25% reduction of the smoke production compared with the formulation using SEP) presenting a remarkable behaviour against dripping and self-extinction when a flame is directly applied. The mechanism of ceramization under fire conditions was discussed. It was found that EPDM system with SEPTB additive transformed into a rigid ceramic after treating at 1000 °C. In this particular case, the ceramization was more efficient due to the sepiolite transformation to enstatite at lower temperatures (∼750 vs ∼850 °C) combined with the “in situ” formation of a glassy phase which notably enhances the reinforcement of the char layer by forming a reinforcing 3D enstatite fibers net structure that reduces smoke production and even totally avoids the dripping of melted polymer by the action of the heat in a fire event. This work provides new insights for the preparation of high-performance synergist additive based on sepiolite for the enhancement of fire retardance of EPDM system for cable applications.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.