Comparative performance analysis of eutectic salt-water solutions in latent thermal energy storage for residential applications: Insights from the ECHO project

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2025-02-12 DOI:10.1016/j.applthermaleng.2025.125917
G. Lombardo , G. Zanetti , D. Menegazzo , L. Vallese , S. Bordignon , M.De Carli , M. Bottarelli , A.A. Aydın , F. Agresti , S. Bobbo , L. Fedele
{"title":"Comparative performance analysis of eutectic salt-water solutions in latent thermal energy storage for residential applications: Insights from the ECHO project","authors":"G. Lombardo ,&nbsp;G. Zanetti ,&nbsp;D. Menegazzo ,&nbsp;L. Vallese ,&nbsp;S. Bordignon ,&nbsp;M.De Carli ,&nbsp;M. Bottarelli ,&nbsp;A.A. Aydın ,&nbsp;F. Agresti ,&nbsp;S. Bobbo ,&nbsp;L. Fedele","doi":"10.1016/j.applthermaleng.2025.125917","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the potential of eutectic salt-water solutions as phase change materials (PCMs) for Cooling Thermal Energy Storage (CTES) systems, with a focus on residential applications under the Horizon Europe ECHO project. The research addresses the pressing need for sustainable, compact, and efficient thermal energy storage systems to reduce greenhouse gas emissions and improve energy efficiency in alignment with EU climate objectives. Among the evaluated PCMs, a Na<sub>2</sub>CO<sub>3</sub>/H<sub>2</sub>O eutectic solution, enhanced with graphite, demonstrated considerable performance, achieving a 78 % increase in thermal conductivity in the liquid phase and a 55 % improvement in the solid phase compared to the base solution, while maintaining a strong latent heat of melting (284 kJ/kg) and low subcooling (1.97 K). Comprehensive experimental methods, including Differential Scanning Calorimetry (DSC) and Transient Plane Source (TPS) analysis, were employed to characterize the thermophysical properties of the PCMs. These techniques ensured precise measurements of latent heat, specific heat capacity, and thermal conductivity, with uncertainties of ± 2 % and ± 5 % for DSC and TPS measurements, respectively. Comparative analysis of the custom-made Na<sub>2</sub>CO<sub>3</sub>/H<sub>2</sub>O solution with graphite and two commercial PCMs highlighted the advantages of the custom formulation, particularly in terms of reactivity and thermal conductivity, making it a strong candidate for CTES integration.</div><div>This work provides significant contributions to the understanding of eutectics thermophysical properties, a critical yet underexplored area, and sets the stage for the practical implementation of advanced LTES systems. The findings emphasize the importance of precise experimental characterization for accurate modeling and system optimization, laying the foundation for future efforts in scaling and deploying full-scale CTES units for energy-efficient residential applications.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"268 ","pages":"Article 125917"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125005083","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of eutectic salt-water solutions as phase change materials (PCMs) for Cooling Thermal Energy Storage (CTES) systems, with a focus on residential applications under the Horizon Europe ECHO project. The research addresses the pressing need for sustainable, compact, and efficient thermal energy storage systems to reduce greenhouse gas emissions and improve energy efficiency in alignment with EU climate objectives. Among the evaluated PCMs, a Na2CO3/H2O eutectic solution, enhanced with graphite, demonstrated considerable performance, achieving a 78 % increase in thermal conductivity in the liquid phase and a 55 % improvement in the solid phase compared to the base solution, while maintaining a strong latent heat of melting (284 kJ/kg) and low subcooling (1.97 K). Comprehensive experimental methods, including Differential Scanning Calorimetry (DSC) and Transient Plane Source (TPS) analysis, were employed to characterize the thermophysical properties of the PCMs. These techniques ensured precise measurements of latent heat, specific heat capacity, and thermal conductivity, with uncertainties of ± 2 % and ± 5 % for DSC and TPS measurements, respectively. Comparative analysis of the custom-made Na2CO3/H2O solution with graphite and two commercial PCMs highlighted the advantages of the custom formulation, particularly in terms of reactivity and thermal conductivity, making it a strong candidate for CTES integration.
This work provides significant contributions to the understanding of eutectics thermophysical properties, a critical yet underexplored area, and sets the stage for the practical implementation of advanced LTES systems. The findings emphasize the importance of precise experimental characterization for accurate modeling and system optimization, laying the foundation for future efforts in scaling and deploying full-scale CTES units for energy-efficient residential applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
The thermodynamic relationship between reducing exergy destruction and improving thermal efficiency in internal combustion engines Editorial Board Comparative performance analysis of eutectic salt-water solutions in latent thermal energy storage for residential applications: Insights from the ECHO project Evaluating retrofitting and operational efficiency of automobile air conditioners using environmentally-friendly refrigerants Experimental study and dynamic response analysis of thermal–hydraulic characteristics in zigzag PCHE at ultra-low temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1