{"title":"Analyses of Features of Magnetic Cycles at Different Amounts of Dynamo Supercriticality: Solar Dynamo Is About Two Times Critical","authors":"Sanket Wavhal, Pawan Kumar, Bidya Binay Karak","doi":"10.1007/s11207-025-02428-w","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of a large-scale magnetic field in the Sun and stars is usually possible when the dynamo number <span>\\((D)\\)</span> is above a critical value <span>\\(D_{c}\\)</span>. As the star ages, its rotation rate and thus <span>\\(D\\)</span> decrease. Hence, the question is how far the solar dynamo is from the critical dynamo transition. To answer this question, we have performed a set of simulations using Babcock–Leighton type dynamo models at different values of dynamo supercriticality and analyzed various features of magnetic cycle. By comparing the recovery rates of the dynamo from the Maunder minimum and statistics (numbers and durations) of the grand minima and maxima with that of observations and we show that the solar dynamo is only about two times critical and thus not highly supercritical. The observed correlation between the polar field proxy and the following cycle amplitudes and Gnevyshev–Ohl rule are also compatible with this conclusion.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02428-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of a large-scale magnetic field in the Sun and stars is usually possible when the dynamo number \((D)\) is above a critical value \(D_{c}\). As the star ages, its rotation rate and thus \(D\) decrease. Hence, the question is how far the solar dynamo is from the critical dynamo transition. To answer this question, we have performed a set of simulations using Babcock–Leighton type dynamo models at different values of dynamo supercriticality and analyzed various features of magnetic cycle. By comparing the recovery rates of the dynamo from the Maunder minimum and statistics (numbers and durations) of the grand minima and maxima with that of observations and we show that the solar dynamo is only about two times critical and thus not highly supercritical. The observed correlation between the polar field proxy and the following cycle amplitudes and Gnevyshev–Ohl rule are also compatible with this conclusion.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.