High-resolution genome-wide association study reveals two genes influencing dietary fiber content in sesame (Sesamum indicum L.)

IF 2 3区 农林科学 Q2 AGRONOMY Crop Science Pub Date : 2025-02-13 DOI:10.1002/csc2.21438
Guiting Li, Hengchun Cao, Weifei Yang, Ming Ju, Qin Ma, Cuiying Wang, Zhanyou Zhang, Qiuzhen Tian, Jiayuan Chen, Qingli Yuan, Hua Du, Hongmei Miao, Haiyang Zhang
{"title":"High-resolution genome-wide association study reveals two genes influencing dietary fiber content in sesame (Sesamum indicum L.)","authors":"Guiting Li,&nbsp;Hengchun Cao,&nbsp;Weifei Yang,&nbsp;Ming Ju,&nbsp;Qin Ma,&nbsp;Cuiying Wang,&nbsp;Zhanyou Zhang,&nbsp;Qiuzhen Tian,&nbsp;Jiayuan Chen,&nbsp;Qingli Yuan,&nbsp;Hua Du,&nbsp;Hongmei Miao,&nbsp;Haiyang Zhang","doi":"10.1002/csc2.21438","DOIUrl":null,"url":null,"abstract":"<p>Dietary fiber is widely recognized for its beneficial effects on human health, and sesame (<i>Sesamum indicum</i> L.) seeds are an important source of dietary fiber. However, efforts to improve sesame for higher fiber have been constrained by limited knowledge of the genetic factors underlying this trait. In this study, we identified a strong correlation between fiber and sugar content, both of which are significantly influenced by genetic factors. A large-scale analysis of 222 sesame germplasm resources revealed genome-wide single nucleotide polymorphism (<i>n</i> = 1,535,018), insertions and deletions (InDels; <i>n</i> = 325,371), and structure variations (SVs; <i>n</i> = 29,028). Linkage disequilibrium and genome-wide association studies identified an InDel quantitative trait locus targeting the <i>SiLAC3</i> gene, which caused a gene frameshift mutation significantly associated with both sugar and dietary fiber traits. Furthermore, a 1201-bp deletion SV in the coding and 3′ untranslated regions of the <i>SiXTH30</i> gene was associated with high fiber content. Notably, two accessions (CX150 and CX546) with pyramiding favorable alleles of these two mutated genes exhibited a significant increase in fiber content compared to accessions with only one favorable allele. We also found two candidate genes highly expressed during the early and middle stages of seed development, both of which have been previously reported to play important roles in cell wall fiber content. In conclusion, our findings highlight two key fiber-associated candidate genes, which could serve as valuable resources for molecular breeding aimed at increasing fiber content in sesame seeds.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.21438","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Dietary fiber is widely recognized for its beneficial effects on human health, and sesame (Sesamum indicum L.) seeds are an important source of dietary fiber. However, efforts to improve sesame for higher fiber have been constrained by limited knowledge of the genetic factors underlying this trait. In this study, we identified a strong correlation between fiber and sugar content, both of which are significantly influenced by genetic factors. A large-scale analysis of 222 sesame germplasm resources revealed genome-wide single nucleotide polymorphism (n = 1,535,018), insertions and deletions (InDels; n = 325,371), and structure variations (SVs; n = 29,028). Linkage disequilibrium and genome-wide association studies identified an InDel quantitative trait locus targeting the SiLAC3 gene, which caused a gene frameshift mutation significantly associated with both sugar and dietary fiber traits. Furthermore, a 1201-bp deletion SV in the coding and 3′ untranslated regions of the SiXTH30 gene was associated with high fiber content. Notably, two accessions (CX150 and CX546) with pyramiding favorable alleles of these two mutated genes exhibited a significant increase in fiber content compared to accessions with only one favorable allele. We also found two candidate genes highly expressed during the early and middle stages of seed development, both of which have been previously reported to play important roles in cell wall fiber content. In conclusion, our findings highlight two key fiber-associated candidate genes, which could serve as valuable resources for molecular breeding aimed at increasing fiber content in sesame seeds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
期刊最新文献
Identification of genetic loci associated with protein and fiber digestibility in alfalfa (Medicago sativa L.) A crop wild relative inventory for Brazil High-resolution genome-wide association study reveals two genes influencing dietary fiber content in sesame (Sesamum indicum L.) Genome-wide association study for traits related to cold tolerance and recovery during seedling stage in rice Integrative effects of organic and inorganic fertilization on soil functions, nitrogen use efficiency, and wheat productivity depend on tillage intensities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1