Genome-wide association study for traits related to cold tolerance and recovery during seedling stage in rice

IF 2 3区 农林科学 Q2 AGRONOMY Crop Science Pub Date : 2025-02-13 DOI:10.1002/csc2.70003
Khushboo Rastogi, Sumeet P. Mankar, Endang M. Septiningsih
{"title":"Genome-wide association study for traits related to cold tolerance and recovery during seedling stage in rice","authors":"Khushboo Rastogi,&nbsp;Sumeet P. Mankar,&nbsp;Endang M. Septiningsih","doi":"10.1002/csc2.70003","DOIUrl":null,"url":null,"abstract":"<p>Rice (<i>Oryza sativa</i> L.), due to its tropical and subtropical origin, is adversely affected by low temperatures below 15°C, restricting growth and yield. During the seedling and vegetative stage, cold stress causes curled leaves, fewer tillers, retarded growth, chlorosis, and necrosis. Due to the significance of this trait, exploring the wealth of genetic resources from a wider pool of germplasm to identify new sources of tolerance will be a crucial step. Toward this goal, we performed a genome-wide association study (GWAS) on a novel diversity panel of 238 rice accessions using the 7K SNP Cornell-IR LD Rice (C7AIR) single nucleotide polymorphism (SNP) array. The experiment was conducted in controlled growth conditions, and rice accessions were evaluated for seven traits and four indices, which were recorded at three different time points, that is, before cold treatment, after cold treatment, and post-recovery phase. A total of 77 significant GWAS-quantitative trait loci (QTLs) were identified for 21 cold tolerance and related traits of interest. Out of these, 34 were detected after cold stress, and 43 were detected during the post-recovery phase. A total of 42 QTL regions were significant at false discovery rate (FDR) &lt; 0.001 and −log<sub>10</sub>(<i>p</i>-values) &gt; 5. In addition, 31 novel GWAS-QTLs, three colocalized GWAS-QTL hotspots, and eight colocalized GWAS-QTLs for two traits sharing the same genomic location were also identified. The results of this study may help in further elucidating the molecular mechanisms underlying cold tolerance as well as aid in developing climate-smart rice varieties for chilling stress conditions.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.70003","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice (Oryza sativa L.), due to its tropical and subtropical origin, is adversely affected by low temperatures below 15°C, restricting growth and yield. During the seedling and vegetative stage, cold stress causes curled leaves, fewer tillers, retarded growth, chlorosis, and necrosis. Due to the significance of this trait, exploring the wealth of genetic resources from a wider pool of germplasm to identify new sources of tolerance will be a crucial step. Toward this goal, we performed a genome-wide association study (GWAS) on a novel diversity panel of 238 rice accessions using the 7K SNP Cornell-IR LD Rice (C7AIR) single nucleotide polymorphism (SNP) array. The experiment was conducted in controlled growth conditions, and rice accessions were evaluated for seven traits and four indices, which were recorded at three different time points, that is, before cold treatment, after cold treatment, and post-recovery phase. A total of 77 significant GWAS-quantitative trait loci (QTLs) were identified for 21 cold tolerance and related traits of interest. Out of these, 34 were detected after cold stress, and 43 were detected during the post-recovery phase. A total of 42 QTL regions were significant at false discovery rate (FDR) < 0.001 and −log10(p-values) > 5. In addition, 31 novel GWAS-QTLs, three colocalized GWAS-QTL hotspots, and eight colocalized GWAS-QTLs for two traits sharing the same genomic location were also identified. The results of this study may help in further elucidating the molecular mechanisms underlying cold tolerance as well as aid in developing climate-smart rice varieties for chilling stress conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
期刊最新文献
Identification of genetic loci associated with protein and fiber digestibility in alfalfa (Medicago sativa L.) A crop wild relative inventory for Brazil High-resolution genome-wide association study reveals two genes influencing dietary fiber content in sesame (Sesamum indicum L.) Genome-wide association study for traits related to cold tolerance and recovery during seedling stage in rice Integrative effects of organic and inorganic fertilization on soil functions, nitrogen use efficiency, and wheat productivity depend on tillage intensities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1