Age-Related Impairments in Immune Cell Efferocytosis and Autophagy Hinder Atherosclerosis Regression.

IF 7.4 1区 医学 Q1 HEMATOLOGY Arteriosclerosis, Thrombosis, and Vascular Biology Pub Date : 2025-02-13 DOI:10.1161/ATVBAHA.124.321662
Dominique M Boucher, Sabrina Robichaud, Victoria Lorant, Jonathan S Leon, Issraa Suliman, Adil Rasheed, Leah I Susser, Christina Emerton, Michele Geoffrion, Erica De Jong, Dawn M E Bowdish, Masanori Aikawa, Elena Aikawa, Sasha A Singh, Katey J Rayner, Mireille Ouimet
{"title":"Age-Related Impairments in Immune Cell Efferocytosis and Autophagy Hinder Atherosclerosis Regression.","authors":"Dominique M Boucher, Sabrina Robichaud, Victoria Lorant, Jonathan S Leon, Issraa Suliman, Adil Rasheed, Leah I Susser, Christina Emerton, Michele Geoffrion, Erica De Jong, Dawn M E Bowdish, Masanori Aikawa, Elena Aikawa, Sasha A Singh, Katey J Rayner, Mireille Ouimet","doi":"10.1161/ATVBAHA.124.321662","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging is a well-established risk factor for the development and progression of atherosclerosis, but the molecular mechanisms underlying this relationship remain poorly defined, and its role in atherosclerosis regression is unknown. To uncover age-related alterations that may impair atherosclerosis regression, we investigated the response of young and old macrophages to atherogenic lipoproteins in vitro and in vivo.</p><p><strong>Methods: </strong>Metabolic and proteomic studies were performed in vitro using macrophages differentiated from the bone marrow of young or old mice. To test the role of immune cell aging in atherosclerosis regression, bone marrow from young and old donors was transplanted into irradiated young recipient mice expressing gain-of-function AAV-PCSK9. Following 14 weeks of Western diet feeding, atherosclerosis regression was induced by switching to a standard laboratory diet for 4 weeks.</p><p><strong>Results: </strong>Compared with young macrophages, old macrophages accumulated more lipid droplets upon lipid loading with the pro-atherogenic lipoprotein aggregated LDL (low-density lipoprotein), accompanied by a failure to proportionally induce autophagy and cholesterol efflux. Proteomic analysis of bone marrow-derived macrophages revealed that pathways related to endocytosis, engulfment, and phagocytosis were downregulated in old lipid-loaded macrophages. Functional studies confirmed a reduction in efferocytic capacity in old macrophages. In recipient mice transplanted with old bone marrow, atherosclerosis regression was impaired, as evidenced by inefficient resolution of circulating inflammatory cell levels, reduced activation of plaque autophagy and apoptotic cell clearance, and persistent plaque CD45<sup>+</sup> and CD68<sup>+</sup> content.</p><p><strong>Conclusions: </strong>Aging impairs macrophage function through reduced efferocytosis and autophagy activation, limiting atherosclerosis regression. These results highlight the need to better define the mechanisms linking aging to atherosclerosis to develop targeted therapies for the aging population.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.321662","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aging is a well-established risk factor for the development and progression of atherosclerosis, but the molecular mechanisms underlying this relationship remain poorly defined, and its role in atherosclerosis regression is unknown. To uncover age-related alterations that may impair atherosclerosis regression, we investigated the response of young and old macrophages to atherogenic lipoproteins in vitro and in vivo.

Methods: Metabolic and proteomic studies were performed in vitro using macrophages differentiated from the bone marrow of young or old mice. To test the role of immune cell aging in atherosclerosis regression, bone marrow from young and old donors was transplanted into irradiated young recipient mice expressing gain-of-function AAV-PCSK9. Following 14 weeks of Western diet feeding, atherosclerosis regression was induced by switching to a standard laboratory diet for 4 weeks.

Results: Compared with young macrophages, old macrophages accumulated more lipid droplets upon lipid loading with the pro-atherogenic lipoprotein aggregated LDL (low-density lipoprotein), accompanied by a failure to proportionally induce autophagy and cholesterol efflux. Proteomic analysis of bone marrow-derived macrophages revealed that pathways related to endocytosis, engulfment, and phagocytosis were downregulated in old lipid-loaded macrophages. Functional studies confirmed a reduction in efferocytic capacity in old macrophages. In recipient mice transplanted with old bone marrow, atherosclerosis regression was impaired, as evidenced by inefficient resolution of circulating inflammatory cell levels, reduced activation of plaque autophagy and apoptotic cell clearance, and persistent plaque CD45+ and CD68+ content.

Conclusions: Aging impairs macrophage function through reduced efferocytosis and autophagy activation, limiting atherosclerosis regression. These results highlight the need to better define the mechanisms linking aging to atherosclerosis to develop targeted therapies for the aging population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
期刊最新文献
Age-Related Impairments in Immune Cell Efferocytosis and Autophagy Hinder Atherosclerosis Regression. Arginine Methylation by PRMT1 Affects ADAMTS13 Secretion and Enzymatic Activity. GSDMD Deficiency Attenuates the Development of Ascending Aortic Dissections in a Novel Mouse Model. Mechanotransduction in the Perivascular Adipose Tissue. Restoring Vascular Smooth Muscle Cell Mitochondrial Function Attenuates Abdominal Aortic Aneurysm in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1