GSDMD Deficiency Attenuates the Development of Ascending Aortic Dissections in a Novel Mouse Model.

IF 7.4 1区 医学 Q1 HEMATOLOGY Arteriosclerosis, Thrombosis, and Vascular Biology Pub Date : 2025-02-13 DOI:10.1161/ATVBAHA.124.321740
Muhammad J Javed, Rachael M Howard, Hua Li, Laura Carrasco, Marvin L S Dirain, Gang Su, Guoshuai Cai, Gilbert R Upchurch, Zhihua Jiang
{"title":"GSDMD Deficiency Attenuates the Development of Ascending Aortic Dissections in a Novel Mouse Model.","authors":"Muhammad J Javed, Rachael M Howard, Hua Li, Laura Carrasco, Marvin L S Dirain, Gang Su, Guoshuai Cai, Gilbert R Upchurch, Zhihua Jiang","doi":"10.1161/ATVBAHA.124.321740","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mechanisms driving the development of type A aortic dissection (TAD) are currently poorly understood, and animal models of spontaneous TAD are limited. In the present study, we developed a novel mouse TAD model and evaluated the role of GSDMD (gasdermin D) in TAD development.</p><p><strong>Methods: </strong>TADs were created by treating the ascending aorta of adult C57BL/6J mice with Act E (active elastase) and β-aminopropionitrile. The temporal progress of the TAD pathology was rigorously characterized by histological evaluation and scanning electron microscopy, while potential mechanisms were explored using bulk RNA sequencing of specimens collected at multiple time points. With this novel TAD model, we conducted additional experiments to investigate the impact of GSDMD deficiency on TAD formation.</p><p><strong>Results: </strong>Ascending aortas challenged with Act E and β-aminopropionitrile developed pathology featuring the early onset of intimomedial tears (complete penetration) and intramural hematomas, followed by progressive medial loss and aortic dilation. Ingenuity pathway analysis and functional annotation of differentially expressed genes suggested that a unique inflammatory microenvironment, rather than general inflammation, promotes the onset of TADs by specifically recruiting neutrophils to the aortic wall. At later stages, T cell-mediated immune injury emerged as the primary driver of pathology. Gsdmd deficiency attenuated medial loss, adventitial fibrosis, and dilation of TADs. This protective effect correlated with a reduced cell death and decreased T-cell infiltration in TADs. Notably, cleaved GSDMD was detected in human TADs but was absent in healthy aortas.</p><p><strong>Conclusions: </strong>A novel mouse TAD model was developed, specifically targeting the ascending aorta. This model generates a unique microenvironment that activates specific immune cell subsets, driving the onset and subsequent remodeling of TADs. Consistently, Gsdmd deficiency mitigates TAD development, likely by modulating cell death and T-cell responses. This model provides a valuable tool for studying immune injury mechanisms in TAD pathogenesis.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.321740","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mechanisms driving the development of type A aortic dissection (TAD) are currently poorly understood, and animal models of spontaneous TAD are limited. In the present study, we developed a novel mouse TAD model and evaluated the role of GSDMD (gasdermin D) in TAD development.

Methods: TADs were created by treating the ascending aorta of adult C57BL/6J mice with Act E (active elastase) and β-aminopropionitrile. The temporal progress of the TAD pathology was rigorously characterized by histological evaluation and scanning electron microscopy, while potential mechanisms were explored using bulk RNA sequencing of specimens collected at multiple time points. With this novel TAD model, we conducted additional experiments to investigate the impact of GSDMD deficiency on TAD formation.

Results: Ascending aortas challenged with Act E and β-aminopropionitrile developed pathology featuring the early onset of intimomedial tears (complete penetration) and intramural hematomas, followed by progressive medial loss and aortic dilation. Ingenuity pathway analysis and functional annotation of differentially expressed genes suggested that a unique inflammatory microenvironment, rather than general inflammation, promotes the onset of TADs by specifically recruiting neutrophils to the aortic wall. At later stages, T cell-mediated immune injury emerged as the primary driver of pathology. Gsdmd deficiency attenuated medial loss, adventitial fibrosis, and dilation of TADs. This protective effect correlated with a reduced cell death and decreased T-cell infiltration in TADs. Notably, cleaved GSDMD was detected in human TADs but was absent in healthy aortas.

Conclusions: A novel mouse TAD model was developed, specifically targeting the ascending aorta. This model generates a unique microenvironment that activates specific immune cell subsets, driving the onset and subsequent remodeling of TADs. Consistently, Gsdmd deficiency mitigates TAD development, likely by modulating cell death and T-cell responses. This model provides a valuable tool for studying immune injury mechanisms in TAD pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
期刊最新文献
Age-Related Impairments in Immune Cell Efferocytosis and Autophagy Hinder Atherosclerosis Regression. Arginine Methylation by PRMT1 Affects ADAMTS13 Secretion and Enzymatic Activity. GSDMD Deficiency Attenuates the Development of Ascending Aortic Dissections in a Novel Mouse Model. Mechanotransduction in the Perivascular Adipose Tissue. Restoring Vascular Smooth Muscle Cell Mitochondrial Function Attenuates Abdominal Aortic Aneurysm in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1