Anastasia V Spyrou, Konstantinos Zodhiates, Yiannis Deligiannakis
{"title":"Comparison of Single Atoms vs. Sub-Nanoclusters as Co-Catalysts in Perovskites and Metal Oxides for Photocatalytic Technologies.","authors":"Anastasia V Spyrou, Konstantinos Zodhiates, Yiannis Deligiannakis","doi":"10.3390/nano15030226","DOIUrl":null,"url":null,"abstract":"<p><p>Adatoms as co-catalysts may play a key role in photocatalysis, yet control of their exact configuration remains challenging. Specifically, there is converging evidence that ultra-small structures may be optimal as co-catalysts; however, a comprehensive distinction between single atoms (SAs), sub-nanoclusters (SNCs), and quantum-sized small particles (QSSPs) has yet to be established. Herein, we present a critical review addressing these distinctions, along with challenges related to the controlled synthesis of SAs, SNCs, and QSSPs; their detection methods; and their functional benefits in photocatalysis. Our discussion focuses on perovskite oxides (e.g., such as ABO<sub>3</sub>, where A and B are cations) and metal oxides (M<sub>x</sub>O<sub>y</sub>, where M is a metal) decorated with adatoms, which demonstrate superior photocatalytic performance compared to their unmodified counterparts. Finally, we highlight cases of misinterpretation between SA, SNC, and QSSP configurations emerging from limitations in high-resolution detection techniques and synthesis methods.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adatoms as co-catalysts may play a key role in photocatalysis, yet control of their exact configuration remains challenging. Specifically, there is converging evidence that ultra-small structures may be optimal as co-catalysts; however, a comprehensive distinction between single atoms (SAs), sub-nanoclusters (SNCs), and quantum-sized small particles (QSSPs) has yet to be established. Herein, we present a critical review addressing these distinctions, along with challenges related to the controlled synthesis of SAs, SNCs, and QSSPs; their detection methods; and their functional benefits in photocatalysis. Our discussion focuses on perovskite oxides (e.g., such as ABO3, where A and B are cations) and metal oxides (MxOy, where M is a metal) decorated with adatoms, which demonstrate superior photocatalytic performance compared to their unmodified counterparts. Finally, we highlight cases of misinterpretation between SA, SNC, and QSSP configurations emerging from limitations in high-resolution detection techniques and synthesis methods.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.