{"title":"Cuttlefish-Bone-Derived Hybrid Composite Scaffolds for Bone Tissue Engineering.","authors":"Vignesh Raj Sivaperumal, Sutha Sadhasivam, Ramalingam Manikandan, Ilanchezhiyan Pugazhendi, Saravanan Sekar, Youngmin Lee, Sejoon Lee, Sankar Sekar","doi":"10.3390/nano15030196","DOIUrl":null,"url":null,"abstract":"<p><p>Current investigations into the fabrication of innovative biomaterials that stimulate cartilage development result from increasing interest due to emerging bone defects. In particular, the investigation of biomaterials for musculoskeletal therapies extensively depends on the development of various hydroxyapatite (HA)/sodium alginate (SA) composites. Cuttlefish bone (CFB)-derived composite scaffolds for hard tissue regeneration have been effectively illustrated in this investigation using a hydrothermal technique. In this, the HA was prepared from the CFB source without altering its biological properties. The as-developed HA nanocomposites were investigated through XRD, FTIR, SEM, and EDX analyses to confirm their structural, functional, and morphological orientation. The higher the interfacial density of the HA/SA nanocomposites, the more the hardness of the scaffold increased with the higher applied load. Furthermore, the HA/SA nanocomposite revealed a remarkable antibacterial activity against the bacterial strains such as <i>E. coli</i> and <i>S. aureus</i> through the inhibition zones measured as 18 mm and 20 mm, respectively. The results demonstrated a minor decrease in cell viability compared with the untreated culture, with an observed percentage of cell viability at 97.2% for the HA/SA nanocomposites. Hence, the proposed HA/SA scaffold would be an excellent alternative for tissue engineering applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030196","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current investigations into the fabrication of innovative biomaterials that stimulate cartilage development result from increasing interest due to emerging bone defects. In particular, the investigation of biomaterials for musculoskeletal therapies extensively depends on the development of various hydroxyapatite (HA)/sodium alginate (SA) composites. Cuttlefish bone (CFB)-derived composite scaffolds for hard tissue regeneration have been effectively illustrated in this investigation using a hydrothermal technique. In this, the HA was prepared from the CFB source without altering its biological properties. The as-developed HA nanocomposites were investigated through XRD, FTIR, SEM, and EDX analyses to confirm their structural, functional, and morphological orientation. The higher the interfacial density of the HA/SA nanocomposites, the more the hardness of the scaffold increased with the higher applied load. Furthermore, the HA/SA nanocomposite revealed a remarkable antibacterial activity against the bacterial strains such as E. coli and S. aureus through the inhibition zones measured as 18 mm and 20 mm, respectively. The results demonstrated a minor decrease in cell viability compared with the untreated culture, with an observed percentage of cell viability at 97.2% for the HA/SA nanocomposites. Hence, the proposed HA/SA scaffold would be an excellent alternative for tissue engineering applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.