{"title":"Prediction of the Trimer Protein Interface Residue Pair by CNN-GRU Model Based on Multi-Feature Map.","authors":"Yanfen Lyu, Ting Xiong, Shuaibo Shi, Dong Wang, Xueqing Yang, Qihuan Liu, Zhengtan Li, Zhixin Li, Chunxia Wang, Ruiai Chen","doi":"10.3390/nano15030188","DOIUrl":null,"url":null,"abstract":"<p><p>Most life activities of organisms are realized through protein-protein interactions, and these interactions are mainly achieved through residue-residue contact between monomer proteins. Consequently, studying residue-residue contact at the protein interaction interface can contribute to a deeper understanding of the protein-protein interaction mechanism. In this paper, we focus on the research of the trimer protein interface residue pair. Firstly, we utilize the amino acid k-interval product factor descriptor (AAIPF(k)) to integrate the positional information and physicochemical properties of amino acids, combined with the electric properties and geometric shape features of residues, to construct an 8 × 16 multi-feature map. This multi-feature map represents a sample composed of two residues on a trimer protein. Secondly, we construct a CNN-GRU deep learning framework to predict the trimer protein interface residue pair. The results show that when each dimer protein provides 10 prediction results and two protein-protein interaction interfaces of a trimer protein needed to be accurately predicted, the accuracy of our proposed method is 60%. When each dimer protein provides 10 prediction results and one protein-protein interaction interface of a trimer protein needs to be accurately predicted, the accuracy of our proposed method is 93%. Our results can provide experimental researchers with a limited yet precise dataset containing correct trimer protein interface residue pairs, which is of great significance in guiding the experimental resolution of the trimer protein three-dimensional structure. Furthermore, compared to other computational methods, our proposed approach exhibits superior performance in predicting residue-residue contact at the trimer protein interface.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030188","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Most life activities of organisms are realized through protein-protein interactions, and these interactions are mainly achieved through residue-residue contact between monomer proteins. Consequently, studying residue-residue contact at the protein interaction interface can contribute to a deeper understanding of the protein-protein interaction mechanism. In this paper, we focus on the research of the trimer protein interface residue pair. Firstly, we utilize the amino acid k-interval product factor descriptor (AAIPF(k)) to integrate the positional information and physicochemical properties of amino acids, combined with the electric properties and geometric shape features of residues, to construct an 8 × 16 multi-feature map. This multi-feature map represents a sample composed of two residues on a trimer protein. Secondly, we construct a CNN-GRU deep learning framework to predict the trimer protein interface residue pair. The results show that when each dimer protein provides 10 prediction results and two protein-protein interaction interfaces of a trimer protein needed to be accurately predicted, the accuracy of our proposed method is 60%. When each dimer protein provides 10 prediction results and one protein-protein interaction interface of a trimer protein needs to be accurately predicted, the accuracy of our proposed method is 93%. Our results can provide experimental researchers with a limited yet precise dataset containing correct trimer protein interface residue pairs, which is of great significance in guiding the experimental resolution of the trimer protein three-dimensional structure. Furthermore, compared to other computational methods, our proposed approach exhibits superior performance in predicting residue-residue contact at the trimer protein interface.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.