{"title":"Deep Learning Design for Loss Optimization in Metamaterials.","authors":"Xianfeng Wu, Jing Zhao, Kunlun Xie, Xiaopeng Zhao","doi":"10.3390/nano15030178","DOIUrl":null,"url":null,"abstract":"<p><p>Inherent material loss is a pivotal challenge that impedes the development of metamaterial properties, particularly in the context of 3D metamaterials operating at visible wavelengths. Traditional approaches, such as the design of periodic model structures and the selection of noble metals, have encountered a plateau. Coupled with the complexities of constructing 3D structures and achieving precise alignment, these factors have made the creation of low-loss metamaterials in the visible spectrum a formidable task. In this work, we harness the concept of deep learning, combined with the principle of weak interactions in metamaterials, to re-examine and optimize previously validated disordered discrete metamaterials. The paper presents an innovative strategy for loss optimization in metamaterials with disordered structural unit distributions, proving their robustness and ability to perform intended functions within a critical distribution ratio. This refined design strategy offers a theoretical framework for the development of single-frequency and broadband metamaterials within disordered discrete systems. It paves the way for the loss optimization of optical metamaterials and the facile fabrication of high-performance photonic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030178","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inherent material loss is a pivotal challenge that impedes the development of metamaterial properties, particularly in the context of 3D metamaterials operating at visible wavelengths. Traditional approaches, such as the design of periodic model structures and the selection of noble metals, have encountered a plateau. Coupled with the complexities of constructing 3D structures and achieving precise alignment, these factors have made the creation of low-loss metamaterials in the visible spectrum a formidable task. In this work, we harness the concept of deep learning, combined with the principle of weak interactions in metamaterials, to re-examine and optimize previously validated disordered discrete metamaterials. The paper presents an innovative strategy for loss optimization in metamaterials with disordered structural unit distributions, proving their robustness and ability to perform intended functions within a critical distribution ratio. This refined design strategy offers a theoretical framework for the development of single-frequency and broadband metamaterials within disordered discrete systems. It paves the way for the loss optimization of optical metamaterials and the facile fabrication of high-performance photonic devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.