{"title":"Defect-Tolerant Memristor Crossbar Circuits for Local Learning Neural Networks.","authors":"Seokjin Oh, Rina Yoon, Kyeong-Sik Min","doi":"10.3390/nano15030213","DOIUrl":null,"url":null,"abstract":"<p><p>Local learning algorithms, such as Equilibrium Propagation (EP), have emerged as alternatives to global learning methods like backpropagation for training neural networks. EP offers the potential for more energy-efficient hardware implementation by utilizing only local neuron information for weight updates. However, the practical implementation of EP using memristor-based circuits has significant challenges due to the immature fabrication processes of memristors, resulting in defects and variability issues. Previous implementations of EP with memristor crossbars use two separate circuits for the free and nudge phases. This approach can suffer differences in defects and variability between the two circuits, potentially leading to significant performance degradation. To overcome these limitations, in this paper, we propose a novel time-multiplexing technique that combines the free and nudge phases into a single memristor circuit. Our proposed scheme integrates the dynamic equations of the free and nudge phases into one circuit, allowing defects and variability compensation during the training. Simulations using the MNIST dataset demonstrate that our approach maintains a 92% recognition rate even with a 10% defect rate in memristors, compared to 33% for the previous scheme. Furthermore, the proposed circuit reduces area overhead for both the memristor circuit solving EP's algorithm and the weight-update control circuit.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030213","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Local learning algorithms, such as Equilibrium Propagation (EP), have emerged as alternatives to global learning methods like backpropagation for training neural networks. EP offers the potential for more energy-efficient hardware implementation by utilizing only local neuron information for weight updates. However, the practical implementation of EP using memristor-based circuits has significant challenges due to the immature fabrication processes of memristors, resulting in defects and variability issues. Previous implementations of EP with memristor crossbars use two separate circuits for the free and nudge phases. This approach can suffer differences in defects and variability between the two circuits, potentially leading to significant performance degradation. To overcome these limitations, in this paper, we propose a novel time-multiplexing technique that combines the free and nudge phases into a single memristor circuit. Our proposed scheme integrates the dynamic equations of the free and nudge phases into one circuit, allowing defects and variability compensation during the training. Simulations using the MNIST dataset demonstrate that our approach maintains a 92% recognition rate even with a 10% defect rate in memristors, compared to 33% for the previous scheme. Furthermore, the proposed circuit reduces area overhead for both the memristor circuit solving EP's algorithm and the weight-update control circuit.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.