Jingyuan Zhang, Jiatong Han, Xin Chen, Dan Xu, Xiaobin Wen, Yiming Zhao, Yanyan Huang, Xin Ding, Ge Chen, Donghui Xu, Xiaomin Xu, Guangyang Liu
{"title":"Recent Advances in ZIF Membrane: Fabrication, Separation Ability and Its Application.","authors":"Jingyuan Zhang, Jiatong Han, Xin Chen, Dan Xu, Xiaobin Wen, Yiming Zhao, Yanyan Huang, Xin Ding, Ge Chen, Donghui Xu, Xiaomin Xu, Guangyang Liu","doi":"10.3390/nano15030239","DOIUrl":null,"url":null,"abstract":"<p><p>With the growth of the population and the development of industry and agriculture, water resources are experiencing contamination by numerous pollutants, posing a threat to the aquatic environment and human health. Zeolitic imidazolate framework (ZIF) membranes, as a solution for water pollutant treatment, not only have the advantages of high efficiency adsorption, good selectivity, stability, and easy recyclability, but they also can be modified or derivatized through surface functionalization, compositing, or structural tuning, which can further endow the membranes with other functions, such as catalysis and degradation. In order to improve the performance of ZIF membranes, it is crucial to select suitable preparation methods to optimize the microstructure of the membranes and to improve the separation performance and stability of the membranes. This review systematically summarizes the current major preparation methods of ZIF membranes and their respective advantages and disadvantages, providing an overview of the applications of ZIF membranes in the treatment of water pollutants, such as dyes, antibiotics, and heavy metal ions. Future development prospects are also discussed, with the expectation that future research will optimize the synthesis methods to enhance the mechanical strength of the membranes and improve their selectivity, permeability, and anti-fouling properties through modifications or functionalization. This article is expected to provide theoretical support for the application of ZIF membranes in water pollution treatment.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030239","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the growth of the population and the development of industry and agriculture, water resources are experiencing contamination by numerous pollutants, posing a threat to the aquatic environment and human health. Zeolitic imidazolate framework (ZIF) membranes, as a solution for water pollutant treatment, not only have the advantages of high efficiency adsorption, good selectivity, stability, and easy recyclability, but they also can be modified or derivatized through surface functionalization, compositing, or structural tuning, which can further endow the membranes with other functions, such as catalysis and degradation. In order to improve the performance of ZIF membranes, it is crucial to select suitable preparation methods to optimize the microstructure of the membranes and to improve the separation performance and stability of the membranes. This review systematically summarizes the current major preparation methods of ZIF membranes and their respective advantages and disadvantages, providing an overview of the applications of ZIF membranes in the treatment of water pollutants, such as dyes, antibiotics, and heavy metal ions. Future development prospects are also discussed, with the expectation that future research will optimize the synthesis methods to enhance the mechanical strength of the membranes and improve their selectivity, permeability, and anti-fouling properties through modifications or functionalization. This article is expected to provide theoretical support for the application of ZIF membranes in water pollution treatment.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.