Jian Cheng Bi, Kyo-Cheol Kang, Jun-Young Park, Junbeom Song, Ji-Sung Lee, Hyejung Lim, Young Wook Park, Byeong-Kwon Ju
{"title":"Enhancement of Light Extraction Efficiency Using Wavy-Patterned PDMS Substrates.","authors":"Jian Cheng Bi, Kyo-Cheol Kang, Jun-Young Park, Junbeom Song, Ji-Sung Lee, Hyejung Lim, Young Wook Park, Byeong-Kwon Ju","doi":"10.3390/nano15030198","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an organic light-emitting diode (OLED) light extraction method using a wavy-patterned polydimethylsiloxane (PDMS) substrate created via oxygen (O<sub>2</sub>) plasma treatment. A rapid fabrication process adjusted the flow, pressure, duration, and power of the O<sub>2</sub> plasma treatment to replicate the desired wavy structure. This method allowed the treated samples to maintain over 90% total transmittance and enabled controlled haze adjustments from 10% to 70%. Finite-difference time-domain (FDTD) simulations were employed to determine optimal amplitudes and periods for the wavy structure to maximize optical performance. Further experiments demonstrated that bottom-emitting green fluorescent OLEDs constructed on these substrates achieved an external quantum efficiency (EQE) of 3.5%, representing a 97% improvement compared to planar PDMS OLEDs. Additionally, color purity variation was minimized to 0.044, and the peak wavelength shift was limited to 10 nm, ensuring consistent color purity and intensity even at wide viewing angles. This study demonstrates the potential of this cost-effective and efficient method in advancing high-quality display.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an organic light-emitting diode (OLED) light extraction method using a wavy-patterned polydimethylsiloxane (PDMS) substrate created via oxygen (O2) plasma treatment. A rapid fabrication process adjusted the flow, pressure, duration, and power of the O2 plasma treatment to replicate the desired wavy structure. This method allowed the treated samples to maintain over 90% total transmittance and enabled controlled haze adjustments from 10% to 70%. Finite-difference time-domain (FDTD) simulations were employed to determine optimal amplitudes and periods for the wavy structure to maximize optical performance. Further experiments demonstrated that bottom-emitting green fluorescent OLEDs constructed on these substrates achieved an external quantum efficiency (EQE) of 3.5%, representing a 97% improvement compared to planar PDMS OLEDs. Additionally, color purity variation was minimized to 0.044, and the peak wavelength shift was limited to 10 nm, ensuring consistent color purity and intensity even at wide viewing angles. This study demonstrates the potential of this cost-effective and efficient method in advancing high-quality display.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.