{"title":"Investigation of Thermal Deformation Behavior in Boron Nitride-Reinforced Magnesium Alloy Using Constitutive and Machine Learning Models.","authors":"Ayoub Elajjani, Yinghao Feng, Wangxi Ni, Sinuo Xu, Chaoyang Sun, Shaochuan Feng","doi":"10.3390/nano15030195","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate flow stress prediction is vital for optimizing the manufacturing of lightweight materials under high-temperature conditions. In this study, a boron nitride (BN)-reinforced AZ80 magnesium composite was subjected to hot compression tests at temperatures of 300-400 °C and strain rates ranging from 0.01 to 10 s<sup>-1</sup>. A data-driven Support Vector Regression (SVR) model was developed to predict flow stress based on temperature, strain rate, and strain. Trained on experimental data, the SVR model demonstrated high predictive accuracy, as evidenced by a low mean squared error (MSE), a coefficient of determination (<i>R</i><sup>2</sup>) close to unity, and a minimal average absolute relative error (AARE). Sensitivity analysis revealed that strain rate and temperature exerted the greatest influence on flow stress. By integrating machine learning with experimental observations, this framework enables efficient optimization of thermal deformation, supporting data-driven decision-making in forming processes. The results underscore the potential of combining advanced computational models with real-time experimental data to enhance manufacturing efficiency and improve process control in next-generation lightweight alloys.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030195","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate flow stress prediction is vital for optimizing the manufacturing of lightweight materials under high-temperature conditions. In this study, a boron nitride (BN)-reinforced AZ80 magnesium composite was subjected to hot compression tests at temperatures of 300-400 °C and strain rates ranging from 0.01 to 10 s-1. A data-driven Support Vector Regression (SVR) model was developed to predict flow stress based on temperature, strain rate, and strain. Trained on experimental data, the SVR model demonstrated high predictive accuracy, as evidenced by a low mean squared error (MSE), a coefficient of determination (R2) close to unity, and a minimal average absolute relative error (AARE). Sensitivity analysis revealed that strain rate and temperature exerted the greatest influence on flow stress. By integrating machine learning with experimental observations, this framework enables efficient optimization of thermal deformation, supporting data-driven decision-making in forming processes. The results underscore the potential of combining advanced computational models with real-time experimental data to enhance manufacturing efficiency and improve process control in next-generation lightweight alloys.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.