{"title":"Synthesis of Electrocatalytic Tungsten Carbide Nanoparticles by High-Pressure and High-Temperature Treatment of Organotungsten Compounds.","authors":"Taijiro Tadokoro, Sota Sato, Ichiro Yamane, Hiroki Waizumi, Seiya Yokokura, Toshihiro Shimada","doi":"10.3390/nano15030170","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic framework (MOF)-derived carbon, which contains metal nanoparticles embedded in a carbon matrix, is becoming an important group of catalysts. We report the synthesis of tungsten carbide-carbon nanocomposites using a similar concept, i.e., by pyrolysis of organotungsten compounds under high-temperature and high-pressure conditions. We characterized the product using various analytical techniques and examined its electrocatalytic activity. Two precursors, Bis(cyclopentadienyl)tungsten (IV) dichloride (Cp<sub>2</sub>WCl<sub>2</sub>) and Bis(cyclopentadienyl)tungsten (IV) dihydride (Cp<sub>2</sub>WH<sub>2</sub>) were pyrolyzed at 4.5 GPa and 600 °C. Tungsten carbide (<i>β</i>-WC<sub>1-x</sub>) crystals with a size of 2 nm embedded in graphitic carbon were formed from Cp<sub>2</sub>WH<sub>2</sub>-derived samples. Electrochemical measurements showed that all samples were active in the oxygen reduction reaction (ORR), with the Cp<sub>2</sub>WH<sub>2</sub>-derived sample having the best catalytic performance.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030170","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic framework (MOF)-derived carbon, which contains metal nanoparticles embedded in a carbon matrix, is becoming an important group of catalysts. We report the synthesis of tungsten carbide-carbon nanocomposites using a similar concept, i.e., by pyrolysis of organotungsten compounds under high-temperature and high-pressure conditions. We characterized the product using various analytical techniques and examined its electrocatalytic activity. Two precursors, Bis(cyclopentadienyl)tungsten (IV) dichloride (Cp2WCl2) and Bis(cyclopentadienyl)tungsten (IV) dihydride (Cp2WH2) were pyrolyzed at 4.5 GPa and 600 °C. Tungsten carbide (β-WC1-x) crystals with a size of 2 nm embedded in graphitic carbon were formed from Cp2WH2-derived samples. Electrochemical measurements showed that all samples were active in the oxygen reduction reaction (ORR), with the Cp2WH2-derived sample having the best catalytic performance.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.