Robust propensity score estimation via loss function calibration.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2025-02-12 DOI:10.1177/09622802241308709
Yimeng Shang, Yu-Han Chiu, Lan Kong
{"title":"Robust propensity score estimation via loss function calibration.","authors":"Yimeng Shang, Yu-Han Chiu, Lan Kong","doi":"10.1177/09622802241308709","DOIUrl":null,"url":null,"abstract":"<p><p>Propensity score estimation is often used as a preliminary step to estimate the average treatment effect with observational data. Nevertheless, misspecification of propensity score models undermines the validity of effect estimates in subsequent analyses. Prediction-based machine learning algorithms are increasingly used to estimate propensity scores to allow for more complex relationships between covariates. However, these approaches may not necessarily achieve covariates balancing. We propose a calibration-based method to better incorporate covariate balance properties in a general modeling framework. Specifically, we calibrate the loss function by adding a covariate imbalance penalty to standard parametric (e.g. logistic regressions) or machine learning models (e.g. neural networks). Our approach may mitigate the impact of model misspecification by explicitly taking into account the covariate balance in the propensity score estimation process. The empirical results show that the proposed method is robust to propensity score model misspecification. The integration of loss function calibration improves the balance of covariates and reduces the root-mean-square error of causal effect estimates. When the propensity score model is misspecified, the neural-network-based model yields the best estimator with less bias and smaller variance as compared to other methods considered.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241308709"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241308709","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Propensity score estimation is often used as a preliminary step to estimate the average treatment effect with observational data. Nevertheless, misspecification of propensity score models undermines the validity of effect estimates in subsequent analyses. Prediction-based machine learning algorithms are increasingly used to estimate propensity scores to allow for more complex relationships between covariates. However, these approaches may not necessarily achieve covariates balancing. We propose a calibration-based method to better incorporate covariate balance properties in a general modeling framework. Specifically, we calibrate the loss function by adding a covariate imbalance penalty to standard parametric (e.g. logistic regressions) or machine learning models (e.g. neural networks). Our approach may mitigate the impact of model misspecification by explicitly taking into account the covariate balance in the propensity score estimation process. The empirical results show that the proposed method is robust to propensity score model misspecification. The integration of loss function calibration improves the balance of covariates and reduces the root-mean-square error of causal effect estimates. When the propensity score model is misspecified, the neural-network-based model yields the best estimator with less bias and smaller variance as compared to other methods considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
The relative efficiency of staircase and stepped wedge cluster randomised trial designs. Bayesian mixture models for phylogenetic source attribution from consensus sequences and time since infection estimates. Jointly assessing multiple endpoints in pilot and feasibility studies. Long-term Dagum-power variance function frailty regression model: Application in health studies. Using Bayesian evidence synthesis to quantify uncertainty in population trends in smoking behaviour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1