Berith F Pape, Shraddha Parate, Leif A Eriksson, Vibhu Jha
{"title":"Unraveling the Binding Mode of TSC2-Rheb through Protein Docking and Simulations.","authors":"Berith F Pape, Shraddha Parate, Leif A Eriksson, Vibhu Jha","doi":"10.1021/acs.biochem.4c00562","DOIUrl":null,"url":null,"abstract":"<p><p>Proteasome inhibitors (PIs) constitute the first line of therapy for multiple myeloma (MM). Despite the impressive clinical efficacy, MM remains fatal due to the development of drug resistance over time. During MM progression, stress responses to hypoxia and PIs suppress mammalian target of rapamycin complex 1 (mTORC1) activity by releasing tuberous sclerosis complex 2 (TSC2), which deactivates Ras homologue enriched in brain (Rheb), a crucial regulator of mTORC1. The efficacy of PIs targeting MM is enhanced when mTORC1 is hyperactivated. We thus propose that the inhibition of TSC2 will improve the efficacy of PIs targeting MM. To the best of our knowledge, no cocrystallized structure of the TSC2-Rheb complex has been reported. We therefore developed a representative model using the individual structures of TSC2 (PDB: 7DL2) and Rheb (PDB: 1XTS). Computational modeling involving an extensive protein-protein docking consensus approach was performed to determine the putative binding mode of TSC2-Rheb. The proposed docking poses were refined, clustered, and evaluated by MD simulations to explore the conformational dynamics and protein mobility, particularly at the drug-binding interface of TSC2-Rheb. Our results agree with the suggested binding mode of TSC2-Rheb previously reported in the literature. The results reported herein establish a basis for the development of new inhibitors blocking the binding of TSC2 and Rheb, aiming to reinstate mTORC1 activation and facilitate improved efficacy of PIs against multiple myeloma.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00562","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteasome inhibitors (PIs) constitute the first line of therapy for multiple myeloma (MM). Despite the impressive clinical efficacy, MM remains fatal due to the development of drug resistance over time. During MM progression, stress responses to hypoxia and PIs suppress mammalian target of rapamycin complex 1 (mTORC1) activity by releasing tuberous sclerosis complex 2 (TSC2), which deactivates Ras homologue enriched in brain (Rheb), a crucial regulator of mTORC1. The efficacy of PIs targeting MM is enhanced when mTORC1 is hyperactivated. We thus propose that the inhibition of TSC2 will improve the efficacy of PIs targeting MM. To the best of our knowledge, no cocrystallized structure of the TSC2-Rheb complex has been reported. We therefore developed a representative model using the individual structures of TSC2 (PDB: 7DL2) and Rheb (PDB: 1XTS). Computational modeling involving an extensive protein-protein docking consensus approach was performed to determine the putative binding mode of TSC2-Rheb. The proposed docking poses were refined, clustered, and evaluated by MD simulations to explore the conformational dynamics and protein mobility, particularly at the drug-binding interface of TSC2-Rheb. Our results agree with the suggested binding mode of TSC2-Rheb previously reported in the literature. The results reported herein establish a basis for the development of new inhibitors blocking the binding of TSC2 and Rheb, aiming to reinstate mTORC1 activation and facilitate improved efficacy of PIs against multiple myeloma.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.