Bo Qu, Yuhua He, Shanlin Liu, Yulian Huang, Yingchun Bai
{"title":"Biosynthesis of gold nanoparticles and their protective effect towards diabetic nephropathy by inhibition of oxidative stress.","authors":"Bo Qu, Yuhua He, Shanlin Liu, Yulian Huang, Yingchun Bai","doi":"10.1177/09592989241296432","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes is an emerging health issue on a global scale, with increasing prevalence rates reported in many countries. Many mechanisms are proposed for diabetic nephropathy, with oxidative stress being the most significant. The effectiveness of gold nanoparticles (AuNPs) in the attenuation of nephropathy and oxidative stress in diabetic mice was assessed in this study.</p><p><strong>Objective: </strong>The aim of this study is to synthesize AuNPs and assess their protective effect towards diabetic nephropathy by inhibition of oxidative stress.</p><p><strong>Methods: </strong>The aqueous extract of <i>Allium sativum</i> was employed to synthesize AuNPs. The prepared AuNPs were characterized using a variety of microscopic and spectroscopic techniques. <i>In-vitro</i> studies were conducted using mice. Streptozotocin (STZ) was employed to induce diabetes in rodents. After 7 days of administration of STZ, anesthesia was given to all animals and blood was collected for the assessment of creatinine and Blood Urea Nitrogen (BUN) levels. Later, kidney tissue was removed at 4 °C and changes in pathology and oxidative stress were assessed.</p><p><strong>Results: </strong>Nephropathy was confirmed in diabetic mice by the changes in the pathology of kidney tissue along with significant rise in the plasma levels of BUN and creatinine. Additionally, the peroxidation of lipids, formation of Reactive Oxygen Species (ROS), oxidation of glutathione (GSH), concentration of carbonyl protein was also increased in the tissue of kidney of diabetic mice. Oxidative stress in kidney tissue and changes in the pathology of diabetic mice were inhibited significantly (p < 0.05) with the treatment of AuNPs.</p><p><strong>Conclusion: </strong>This study revealed the protective effects of AuNPs over diabetic nephropathy by inhibiting the pathway of oxidative stress. Since, the prepared AuNPs showed improvement over complications of diabetes, they may be believed as a potential gratuitous treatment next to other drugs for reducing blood glucose.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"36 1","pages":"54-66"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241296432","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetes is an emerging health issue on a global scale, with increasing prevalence rates reported in many countries. Many mechanisms are proposed for diabetic nephropathy, with oxidative stress being the most significant. The effectiveness of gold nanoparticles (AuNPs) in the attenuation of nephropathy and oxidative stress in diabetic mice was assessed in this study.
Objective: The aim of this study is to synthesize AuNPs and assess their protective effect towards diabetic nephropathy by inhibition of oxidative stress.
Methods: The aqueous extract of Allium sativum was employed to synthesize AuNPs. The prepared AuNPs were characterized using a variety of microscopic and spectroscopic techniques. In-vitro studies were conducted using mice. Streptozotocin (STZ) was employed to induce diabetes in rodents. After 7 days of administration of STZ, anesthesia was given to all animals and blood was collected for the assessment of creatinine and Blood Urea Nitrogen (BUN) levels. Later, kidney tissue was removed at 4 °C and changes in pathology and oxidative stress were assessed.
Results: Nephropathy was confirmed in diabetic mice by the changes in the pathology of kidney tissue along with significant rise in the plasma levels of BUN and creatinine. Additionally, the peroxidation of lipids, formation of Reactive Oxygen Species (ROS), oxidation of glutathione (GSH), concentration of carbonyl protein was also increased in the tissue of kidney of diabetic mice. Oxidative stress in kidney tissue and changes in the pathology of diabetic mice were inhibited significantly (p < 0.05) with the treatment of AuNPs.
Conclusion: This study revealed the protective effects of AuNPs over diabetic nephropathy by inhibiting the pathway of oxidative stress. Since, the prepared AuNPs showed improvement over complications of diabetes, they may be believed as a potential gratuitous treatment next to other drugs for reducing blood glucose.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.