Emily M Kerivan, Victoria N Amari, William B Weeks, Leigh H Hardin, Lyle Tobin, Omayma Y Al Azzam, Dana N Reinemann
{"title":"Deciphering Mechanochemical Influences of Emergent Actomyosin Crosstalk Using QCM-D.","authors":"Emily M Kerivan, Victoria N Amari, William B Weeks, Leigh H Hardin, Lyle Tobin, Omayma Y Al Azzam, Dana N Reinemann","doi":"10.1007/s12195-024-00835-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cytoskeletal protein ensembles exhibit emergent mechanics where behavior in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior.</p><p><strong>Methods: </strong>QCM-D is used for the first time to probe alterations in actin-myosin bundle viscoelasticity due to changes in skeletal myosin II concentration and motor nucleotide state. Actomyosin bundles were constructed on a gold QCM-D sensor using a microfluidic setup, and frequency and dissipation change measurements were recorded for each component addition to decipher which assay constituents lead to changes in bundle structural compliancy.</p><p><strong>Results: </strong>Lowering myosin concentration is detected as lower shifts in frequency and dissipation, while the relative changes in frequency and dissipation shifts for both the first and second actin additions are relatively similar. Strikingly, buffer washes with different nucleotides (ATP vs. ADP) yielded unique signatures in frequency and dissipation shifts. As myosin II's ADP-bound state tightly binds actin filaments, we observe an increase in frequency and decrease in dissipation change, indicating a decrease in viscoelasticity, likely due to myosin's increased affinity for actin, conversion from an active motor to a static crosslinker, and ability to recruit additional actin filaments from the surface, making an overall more rigid sensor coating. However, lowering the ADP concentration results in increased system compliancy, indicating that transient crosslinking and retaining a balance of motor activity perhaps results in a more cooperative and productive force generating system.</p><p><strong>Conclusions: </strong>QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, such as motor concentration and nucleotide state. These results provide support for actin's role as a mechanical force-feedback sensor and demonstrate a new approach for deciphering the feedback mechanisms that drive emergent cytoskeletal ensemble crosstalk and intracellular mechanosensing. This approach can be adapted to investigate environmental influences on more complex cytoskeletal ensemble mechanics, including addition of other motors, crosslinkers, and filament types.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00835-w.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"18 1","pages":"99-108"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00835-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Cytoskeletal protein ensembles exhibit emergent mechanics where behavior in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior.
Methods: QCM-D is used for the first time to probe alterations in actin-myosin bundle viscoelasticity due to changes in skeletal myosin II concentration and motor nucleotide state. Actomyosin bundles were constructed on a gold QCM-D sensor using a microfluidic setup, and frequency and dissipation change measurements were recorded for each component addition to decipher which assay constituents lead to changes in bundle structural compliancy.
Results: Lowering myosin concentration is detected as lower shifts in frequency and dissipation, while the relative changes in frequency and dissipation shifts for both the first and second actin additions are relatively similar. Strikingly, buffer washes with different nucleotides (ATP vs. ADP) yielded unique signatures in frequency and dissipation shifts. As myosin II's ADP-bound state tightly binds actin filaments, we observe an increase in frequency and decrease in dissipation change, indicating a decrease in viscoelasticity, likely due to myosin's increased affinity for actin, conversion from an active motor to a static crosslinker, and ability to recruit additional actin filaments from the surface, making an overall more rigid sensor coating. However, lowering the ADP concentration results in increased system compliancy, indicating that transient crosslinking and retaining a balance of motor activity perhaps results in a more cooperative and productive force generating system.
Conclusions: QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, such as motor concentration and nucleotide state. These results provide support for actin's role as a mechanical force-feedback sensor and demonstrate a new approach for deciphering the feedback mechanisms that drive emergent cytoskeletal ensemble crosstalk and intracellular mechanosensing. This approach can be adapted to investigate environmental influences on more complex cytoskeletal ensemble mechanics, including addition of other motors, crosslinkers, and filament types.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00835-w.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.