Obesity-Associated Conditions Hinder Solute Drainage Function of Engineered Human Lymphatic Vessels.

IF 2.3 4区 医学 Q3 BIOPHYSICS Cellular and molecular bioengineering Pub Date : 2025-01-23 eCollection Date: 2025-02-01 DOI:10.1007/s12195-024-00840-z
Alex J Seibel, Cheyanne L Frosti, Abderrahman R Tlemçani, Nikhil Lahiri, Joely A Brammer-DePuy, Matthew D Layne, Joe Tien
{"title":"Obesity-Associated Conditions Hinder Solute Drainage Function of Engineered Human Lymphatic Vessels.","authors":"Alex J Seibel, Cheyanne L Frosti, Abderrahman R Tlemçani, Nikhil Lahiri, Joely A Brammer-DePuy, Matthew D Layne, Joe Tien","doi":"10.1007/s12195-024-00840-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Obesity is associated with poor lymphatic solute drainage. It is unclear whether the chronic inflammation, hypoxia, and hyperlipidemia that are together associated with obesity cause impaired drainage function, and if so, whether these conditions act directly on lymphatic endothelial cells (LECs) or are indirectly mediated by the mechanical properties or cellular composition of the surrounding tissue.</p><p><strong>Methods: </strong>We engineered blind-ended lymphatic vessels in type I collagen gels and simulated the obese microenvironment with a cocktail of tumor necrosis factor (TNF)-α, cobalt chloride (CoCl<sub>2</sub>), and oleate, which model inflammation, hypoxia, and hyperlipidemia, respectively. We compared the solute drainage rate and leakage of lymphatics that were exposed to simulated obesity or not. We performed similar assays with lymphatics in stiffened gels, in adipocyte-laden gels, or in the presence of conditioned medium (CM) from adipose cells treated with the same cocktail.</p><p><strong>Results: </strong>Lymphatics that were exposed to simulated obesity exhibited more gaps in endothelial junctions, leaked more solute, and drained solute less quickly than control lymphatics did, regardless of matrix stiffness. CM from adipose cells that were exposed to simulated obesity did not affect lymphatics. Lymphatics in adipocyte-laden gels did not exhibit worse drainage function when exposed to simulated obesity.</p><p><strong>Conclusions: </strong>The combination of obesity-associated inflammation, hypoxia, and hyperlipidemia impairs lymphatic solute drainage and does so by acting directly on LECs. Surprisingly, adipocytes may play a protective role in preventing obesity-associated conditions from impairing lymphatic solute drainage.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00840-z.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"18 1","pages":"53-69"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00840-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Obesity is associated with poor lymphatic solute drainage. It is unclear whether the chronic inflammation, hypoxia, and hyperlipidemia that are together associated with obesity cause impaired drainage function, and if so, whether these conditions act directly on lymphatic endothelial cells (LECs) or are indirectly mediated by the mechanical properties or cellular composition of the surrounding tissue.

Methods: We engineered blind-ended lymphatic vessels in type I collagen gels and simulated the obese microenvironment with a cocktail of tumor necrosis factor (TNF)-α, cobalt chloride (CoCl2), and oleate, which model inflammation, hypoxia, and hyperlipidemia, respectively. We compared the solute drainage rate and leakage of lymphatics that were exposed to simulated obesity or not. We performed similar assays with lymphatics in stiffened gels, in adipocyte-laden gels, or in the presence of conditioned medium (CM) from adipose cells treated with the same cocktail.

Results: Lymphatics that were exposed to simulated obesity exhibited more gaps in endothelial junctions, leaked more solute, and drained solute less quickly than control lymphatics did, regardless of matrix stiffness. CM from adipose cells that were exposed to simulated obesity did not affect lymphatics. Lymphatics in adipocyte-laden gels did not exhibit worse drainage function when exposed to simulated obesity.

Conclusions: The combination of obesity-associated inflammation, hypoxia, and hyperlipidemia impairs lymphatic solute drainage and does so by acting directly on LECs. Surprisingly, adipocytes may play a protective role in preventing obesity-associated conditions from impairing lymphatic solute drainage.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00840-z.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
期刊最新文献
CRISPR-dCas9 Activation of TSG-6 in MSCs Modulates the Cargo of MSC-Derived Extracellular Vesicles and Attenuates Inflammatory Responses in Human Intervertebral Disc Cells In Vitro. Cellular and Molecular Bioengineering: At the Nexus with the Next Editor-in-Chief. Parting Words from an Editor: Just Review It! Empowering High Throughput Screening of 3D Models: Automated Dispensing of Cervical and Endometrial Cancer Cells. Obesity-Associated Conditions Hinder Solute Drainage Function of Engineered Human Lymphatic Vessels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1