Samantha Seymour, Ines Cadena, Mackenzie Johnson, Riya Thakkar, Molly Jenne, Iman Adem, Alyssa Almer, Rachael Frankovic, Danielle Spence, Andrea Haddadin, Kaitlin C Fogg
{"title":"Empowering High Throughput Screening of 3D Models: Automated Dispensing of Cervical and Endometrial Cancer Cells.","authors":"Samantha Seymour, Ines Cadena, Mackenzie Johnson, Riya Thakkar, Molly Jenne, Iman Adem, Alyssa Almer, Rachael Frankovic, Danielle Spence, Andrea Haddadin, Kaitlin C Fogg","doi":"10.1007/s12195-024-00841-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cervical and endometrial cancers pose significant challenges in women's healthcare due to their high mortality rates and limited treatment options. High throughput screening (HTS) of cervical and endometrial cancer in vitro models offers a promising avenue for drug repurposing and broadening patient treatment options. Traditional two-dimensional (2D) cell-based screenings have limited capabilities to capture crucial multicellular interactions, that are improved upon in three dimensional (3D) multicellular tissue engineered models. However, manual fabrication of the 3D platforms is both time consuming and subject to variability. Thus, the goal of this study was to utilize automated cell dispensing to fabricate 3D cell-based HTS platforms using the HP D100 Single Cell Dispenser to dispense cervical and endometrial cancer cells.</p><p><strong>Methods: </strong>We evaluated the effects of automated dispensing of the cancer cell lines by tuning the dispensing protocol to align with cell size measured in solution and the minimum cell number for acceptable cell viability and proliferation. We modified our previously reported coculture models of cervical and endometrial cancer to be in a 384 well plate format and measured microvessel length and cancer cell invasion.</p><p><strong>Results: </strong>Automatically and manually dispensed cells were directly compared revealing minimal differences between the dispensing methods. These findings suggest that automated dispensing of cancer cells minimally affects cell behavior and can be deployed to decrease in vitro model fabrication time.</p><p><strong>Conclusions: </strong>By streamlining the manufacturing process, automated dispensing holds promise for enhancing efficiency and scalability of 3D in vitro HTS platforms, ultimately contributing to advancement in cancer research and treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00841-y.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"18 1","pages":"71-82"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00841-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Cervical and endometrial cancers pose significant challenges in women's healthcare due to their high mortality rates and limited treatment options. High throughput screening (HTS) of cervical and endometrial cancer in vitro models offers a promising avenue for drug repurposing and broadening patient treatment options. Traditional two-dimensional (2D) cell-based screenings have limited capabilities to capture crucial multicellular interactions, that are improved upon in three dimensional (3D) multicellular tissue engineered models. However, manual fabrication of the 3D platforms is both time consuming and subject to variability. Thus, the goal of this study was to utilize automated cell dispensing to fabricate 3D cell-based HTS platforms using the HP D100 Single Cell Dispenser to dispense cervical and endometrial cancer cells.
Methods: We evaluated the effects of automated dispensing of the cancer cell lines by tuning the dispensing protocol to align with cell size measured in solution and the minimum cell number for acceptable cell viability and proliferation. We modified our previously reported coculture models of cervical and endometrial cancer to be in a 384 well plate format and measured microvessel length and cancer cell invasion.
Results: Automatically and manually dispensed cells were directly compared revealing minimal differences between the dispensing methods. These findings suggest that automated dispensing of cancer cells minimally affects cell behavior and can be deployed to decrease in vitro model fabrication time.
Conclusions: By streamlining the manufacturing process, automated dispensing holds promise for enhancing efficiency and scalability of 3D in vitro HTS platforms, ultimately contributing to advancement in cancer research and treatment.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00841-y.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.