Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells.

IF 2.3 4区 医学 Q3 BIOPHYSICS Cellular and molecular bioengineering Pub Date : 2025-01-17 eCollection Date: 2025-02-01 DOI:10.1007/s12195-024-00836-9
Paul V Taufalele, Hannah K Kirkham, Cynthia A Reinhart-King
{"title":"Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells.","authors":"Paul V Taufalele, Hannah K Kirkham, Cynthia A Reinhart-King","doi":"10.1007/s12195-024-00836-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Altered tissue mechanics is a prominent feature of many pathological conditions including cancer. As such, much work has been dedicated to understanding how mechanical features of tissues contribute to pathogenesis. Interestingly, previous work has demonstrated that the tumor vasculature acquires pathological features in part due to enhanced tumor stiffening. To further understand how matrix mechanics may be translated into altered cell behavior and ultimately affect tumor vasculature function, we have investigated the effects of substrate stiffening on endothelial epigenetics. Specifically, we have focused on DNA methylation as recent work indicates DNA methylation in endothelial cells can contribute to aberrant behavior in a range of pathological conditions.</p><p><strong>Methods: </strong>Human umbilical vein endothelial cells (HUVECs) were seeded on stiff and compliant collagen-coated polyacrylamide gels and allowed to form monolayers over 5 days. DNA methylation was assessed via 5-methylcytosine ELISA assays and immunofluorescent staining. Gene expression was assessed via qPCR on RNA isolated from HUVECs seeded on collagen-coated polyacrylamide gels of varying stiffness.</p><p><strong>Results: </strong>Our work demonstrates that endothelial cells cultured on stiffer substrates exhibit lower levels of global DNA methylation relative to endothelial cells cultured on more compliant substrates. Interestingly, gene expression and DNA methylation dynamics suggest stiffness-mediated gene expression may play a role in establishing or maintaining differential DNA methylation levels in addition to enzyme activity. Additionally, we found that the process of passaging induced higher levels of global DNA methylation.</p><p><strong>Conclusions: </strong>Altogether, our results underscore the importance of considering cell culture substrate mechanics to preserve the epigenetic integrity of primary cells and obtain analyses that recapitulate the primary environment. Furthermore, these results serve as an important launching point for further work studying the intersection tissue mechanics and epigenetics under pathological conditions.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"18 1","pages":"29-38"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00836-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Altered tissue mechanics is a prominent feature of many pathological conditions including cancer. As such, much work has been dedicated to understanding how mechanical features of tissues contribute to pathogenesis. Interestingly, previous work has demonstrated that the tumor vasculature acquires pathological features in part due to enhanced tumor stiffening. To further understand how matrix mechanics may be translated into altered cell behavior and ultimately affect tumor vasculature function, we have investigated the effects of substrate stiffening on endothelial epigenetics. Specifically, we have focused on DNA methylation as recent work indicates DNA methylation in endothelial cells can contribute to aberrant behavior in a range of pathological conditions.

Methods: Human umbilical vein endothelial cells (HUVECs) were seeded on stiff and compliant collagen-coated polyacrylamide gels and allowed to form monolayers over 5 days. DNA methylation was assessed via 5-methylcytosine ELISA assays and immunofluorescent staining. Gene expression was assessed via qPCR on RNA isolated from HUVECs seeded on collagen-coated polyacrylamide gels of varying stiffness.

Results: Our work demonstrates that endothelial cells cultured on stiffer substrates exhibit lower levels of global DNA methylation relative to endothelial cells cultured on more compliant substrates. Interestingly, gene expression and DNA methylation dynamics suggest stiffness-mediated gene expression may play a role in establishing or maintaining differential DNA methylation levels in addition to enzyme activity. Additionally, we found that the process of passaging induced higher levels of global DNA methylation.

Conclusions: Altogether, our results underscore the importance of considering cell culture substrate mechanics to preserve the epigenetic integrity of primary cells and obtain analyses that recapitulate the primary environment. Furthermore, these results serve as an important launching point for further work studying the intersection tissue mechanics and epigenetics under pathological conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
期刊最新文献
CRISPR-dCas9 Activation of TSG-6 in MSCs Modulates the Cargo of MSC-Derived Extracellular Vesicles and Attenuates Inflammatory Responses in Human Intervertebral Disc Cells In Vitro. Cellular and Molecular Bioengineering: At the Nexus with the Next Editor-in-Chief. Parting Words from an Editor: Just Review It! Empowering High Throughput Screening of 3D Models: Automated Dispensing of Cervical and Endometrial Cancer Cells. Obesity-Associated Conditions Hinder Solute Drainage Function of Engineered Human Lymphatic Vessels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1