Pixel-wise navigation line extraction of cross-growth-stage seedlings in complex sugarcane fields and extension to corn and rice.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES Frontiers in Plant Science Pub Date : 2025-01-30 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1499896
Hongwei Li, Xindong Lai, Yongmei Mo, Deqiang He, Tao Wu
{"title":"Pixel-wise navigation line extraction of cross-growth-stage seedlings in complex sugarcane fields and extension to corn and rice.","authors":"Hongwei Li, Xindong Lai, Yongmei Mo, Deqiang He, Tao Wu","doi":"10.3389/fpls.2024.1499896","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting the navigation line of crop seedlings is significant for achieving autonomous visual navigation of smart agricultural machinery. Nevertheless, in field management of crop seedlings, numerous available studies involving navigation line extraction mainly focused on specific growth stages of specific crop seedlings so far, lacking a generalizable algorithm for addressing challenges under complex cross-growth-stage seedling conditions. In response to such challenges, we proposed a generalizable navigation line extraction algorithm using classical image processing technologies. First, image preprocessing is performed to enhance the image quality and extract distinct crop regions. Redundant pixels can be eliminated by opening operation and eight-connected component filtering. Then, optimal region detection is applied to identify the fitting area. The optimal pixels of plantation rows are selected by cluster-centerline distance comparison and sigmoid thresholding. Ultimately, the navigation line is extracted by linear fitting, representing the autonomous vehicle's optimal path. An assessment was conducted on a sugarcane dataset. Meanwhile, the generalization capacity of the proposed algorithm has been further verified on corn and rice datasets. Experimental results showed that for seedlings at different growth stages and diverse field environments, the mean error angle (MEA) ranges from 0.844° to 2.96°, the root mean square error (RMSE) ranges from 1.249° to 4.65°, and the mean relative error (MRE) ranges from 1.008% to 3.47%. The proposed algorithm exhibits high accuracy, robustness, and generalization. This study breaks through the shortcomings of traditional visual navigation line extraction, offering a theoretical foundation for classical image-processing-based visual navigation.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1499896"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1499896","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting the navigation line of crop seedlings is significant for achieving autonomous visual navigation of smart agricultural machinery. Nevertheless, in field management of crop seedlings, numerous available studies involving navigation line extraction mainly focused on specific growth stages of specific crop seedlings so far, lacking a generalizable algorithm for addressing challenges under complex cross-growth-stage seedling conditions. In response to such challenges, we proposed a generalizable navigation line extraction algorithm using classical image processing technologies. First, image preprocessing is performed to enhance the image quality and extract distinct crop regions. Redundant pixels can be eliminated by opening operation and eight-connected component filtering. Then, optimal region detection is applied to identify the fitting area. The optimal pixels of plantation rows are selected by cluster-centerline distance comparison and sigmoid thresholding. Ultimately, the navigation line is extracted by linear fitting, representing the autonomous vehicle's optimal path. An assessment was conducted on a sugarcane dataset. Meanwhile, the generalization capacity of the proposed algorithm has been further verified on corn and rice datasets. Experimental results showed that for seedlings at different growth stages and diverse field environments, the mean error angle (MEA) ranges from 0.844° to 2.96°, the root mean square error (RMSE) ranges from 1.249° to 4.65°, and the mean relative error (MRE) ranges from 1.008% to 3.47%. The proposed algorithm exhibits high accuracy, robustness, and generalization. This study breaks through the shortcomings of traditional visual navigation line extraction, offering a theoretical foundation for classical image-processing-based visual navigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
期刊最新文献
Evaluating sowing uniformity in hybrid rice using image processing and the OEW-YOLOv8n network. Integrative analysis of metabolite and transcriptome reveals the biosynthetic pathway and candidate genes for iridoid glycoside biosynthesis in Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong. Advancements in genome editing tools for genetic studies and crop improvement. Machine vision-based detection of key traits in shiitake mushroom caps. Nano-selenium strengthens potato resistance to potato scab induced by Streptomyces spp., increases yield, and elevates tuber quality by influencing rhizosphere microbiomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1