Machine Learning Approach to Identifying Wrong-Site Surgeries Using Centers for Medicare and Medicaid Services Dataset: Development and Validation Study.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES JMIR Formative Research Pub Date : 2025-02-13 DOI:10.2196/68436
Yuan-Hsin Chen, Ching-Hsuan Lin, Chiao-Hsin Fan, An Jim Long, Jeremiah Scholl, Yen-Pin Kao, Usman Iqbal, Yu-Chuan Jack Li
{"title":"Machine Learning Approach to Identifying Wrong-Site Surgeries Using Centers for Medicare and Medicaid Services Dataset: Development and Validation Study.","authors":"Yuan-Hsin Chen, Ching-Hsuan Lin, Chiao-Hsin Fan, An Jim Long, Jeremiah Scholl, Yen-Pin Kao, Usman Iqbal, Yu-Chuan Jack Li","doi":"10.2196/68436","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wrong-site surgery (WSS) is a critical but preventable medical error, often resulting in severe patient harm and substantial financial costs. While protocols exist to reduce wrong-site surgery, underreporting and inconsistent documentation continue to contribute to its persistence. Machine learning (ML) models, which have shown success in detecting medication errors, may offer a solution by identifying unusual procedure-diagnosis combinations. This study investigated whether an ML approach can effectively adapt to detect surgical errors.</p><p><strong>Objective: </strong>This study aimed to evaluate the transferability and effectiveness of an ML-based model for detecting inconsistencies within surgical documentation, particularly focusing on laterality discrepancies.</p><p><strong>Methods: </strong>We used claims data from the Centers for Medicare and Medicaid Services Limited Data Set (CMS-LDS) from 2017 to 2020, focusing on surgical procedures with documented laterality. We developed an adapted Association Outlier Pattern (AOP) ML model to identify uncommon procedure-diagnosis combinations, specifically targeting discrepancies in laterality. The model was trained on data from 2017 to 2019 and tested on 2020 orthopedic procedures, using ICD-10-PCS (International Classification of Diseases, Tenth Revision, Procedure Coding System) codes to distinguish body part and laterality. Test cases were classified based on alignment between procedural and diagnostic laterality, with 2 key subgroups (right-left and left-right mismatches) identified for evaluation. Model performance was assessed by comparing precision-recall curves and accuracy against rule-based methods.</p><p><strong>Results: </strong>The findings here included 346,382 claims, of which 2170 claims demonstrated with significant laterality discrepancies between procedures and diagnoses. Among patients with left-side procedures and right-side diagnoses (603/1106), 54.5% were confirmed as errors after clinical review. For right-side procedures with left-side diagnoses (541/1064), 50.8% were classified as errors. The AOP model identified 697 and 655 potentially unusual combinations in the left-right and right-left subgroups, respectively, with over 80% of these cases confirmed as errors following clinical review. Most confirmed errors involved discrepancies in laterality for the same body part, while nonerror cases typically involved general diagnoses without specified laterality.</p><p><strong>Conclusions: </strong>This investigation showed that the AOP model effectively detects inconsistencies between surgical procedures and diagnoses using CMS-LDS data. The AOP model outperformed traditional rule-based methods, offering higher accuracy in identifying errors. Moreover, the model's transferability from medication-disease associations to procedure-diagnosis verification highlights its broad applicability. By improving the precision of identifying laterality discrepancies, the AOP model can reduce surgical errors, particularly in orthopedic care. These findings suggest that the model enhances patient safety and has the potential to improve clinical decision-making and outcomes.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e68436"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/68436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Wrong-site surgery (WSS) is a critical but preventable medical error, often resulting in severe patient harm and substantial financial costs. While protocols exist to reduce wrong-site surgery, underreporting and inconsistent documentation continue to contribute to its persistence. Machine learning (ML) models, which have shown success in detecting medication errors, may offer a solution by identifying unusual procedure-diagnosis combinations. This study investigated whether an ML approach can effectively adapt to detect surgical errors.

Objective: This study aimed to evaluate the transferability and effectiveness of an ML-based model for detecting inconsistencies within surgical documentation, particularly focusing on laterality discrepancies.

Methods: We used claims data from the Centers for Medicare and Medicaid Services Limited Data Set (CMS-LDS) from 2017 to 2020, focusing on surgical procedures with documented laterality. We developed an adapted Association Outlier Pattern (AOP) ML model to identify uncommon procedure-diagnosis combinations, specifically targeting discrepancies in laterality. The model was trained on data from 2017 to 2019 and tested on 2020 orthopedic procedures, using ICD-10-PCS (International Classification of Diseases, Tenth Revision, Procedure Coding System) codes to distinguish body part and laterality. Test cases were classified based on alignment between procedural and diagnostic laterality, with 2 key subgroups (right-left and left-right mismatches) identified for evaluation. Model performance was assessed by comparing precision-recall curves and accuracy against rule-based methods.

Results: The findings here included 346,382 claims, of which 2170 claims demonstrated with significant laterality discrepancies between procedures and diagnoses. Among patients with left-side procedures and right-side diagnoses (603/1106), 54.5% were confirmed as errors after clinical review. For right-side procedures with left-side diagnoses (541/1064), 50.8% were classified as errors. The AOP model identified 697 and 655 potentially unusual combinations in the left-right and right-left subgroups, respectively, with over 80% of these cases confirmed as errors following clinical review. Most confirmed errors involved discrepancies in laterality for the same body part, while nonerror cases typically involved general diagnoses without specified laterality.

Conclusions: This investigation showed that the AOP model effectively detects inconsistencies between surgical procedures and diagnoses using CMS-LDS data. The AOP model outperformed traditional rule-based methods, offering higher accuracy in identifying errors. Moreover, the model's transferability from medication-disease associations to procedure-diagnosis verification highlights its broad applicability. By improving the precision of identifying laterality discrepancies, the AOP model can reduce surgical errors, particularly in orthopedic care. These findings suggest that the model enhances patient safety and has the potential to improve clinical decision-making and outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
期刊最新文献
Designing a Smartphone-Based Virtual Reality App for Relaxation: Qualitative Crossover Study. A 4-Site Public Deliberation Project on the Acceptability of Youth Self-Consent in Biomedical HIV Prevention Trials: Assessment of Facilitator Fidelity to Key Principles. Acceptance of Unsupervised App-Based Cognitive Assessment in Outpatient Care: An Implementation Study. Machine Learning Approach to Identifying Wrong-Site Surgeries Using Centers for Medicare and Medicaid Services Dataset: Development and Validation Study. Using an Interactive Voice Response Survey to Assess Patient Satisfaction in Ethiopia: Development and Feasibility Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1