Tumor Biomechanics Quantified Using MR Elastography to Predict Response to Neoadjuvant Chemotherapy in Individuals with Breast Cancer.

IF 5.6 Q1 ONCOLOGY Radiology. Imaging cancer Pub Date : 2025-03-01 DOI:10.1148/rycan.240138
Aaditya P Sinha, Patriek Jurrius, Anne-Sophie van Schelt, Omar Darwish, Belul Shifa, Giacomo Annio, Zhane Peterson, Hannah Jeffery, Karen Welsh, Anna Metafa, John Spence, Ashutosh Kothari, Hisham Hamed, Georgina Bitsakou, Vasileios Karydakis, Mangesh Thorat, Elina Shaari, Ali Sever, Anne Rigg, Tony Ng, Sarah Pinder, Ralph Sinkus, Arnie Purushotham
{"title":"Tumor Biomechanics Quantified Using MR Elastography to Predict Response to Neoadjuvant Chemotherapy in Individuals with Breast Cancer.","authors":"Aaditya P Sinha, Patriek Jurrius, Anne-Sophie van Schelt, Omar Darwish, Belul Shifa, Giacomo Annio, Zhane Peterson, Hannah Jeffery, Karen Welsh, Anna Metafa, John Spence, Ashutosh Kothari, Hisham Hamed, Georgina Bitsakou, Vasileios Karydakis, Mangesh Thorat, Elina Shaari, Ali Sever, Anne Rigg, Tony Ng, Sarah Pinder, Ralph Sinkus, Arnie Purushotham","doi":"10.1148/rycan.240138","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To evaluate the ability of MR elastography (MRE) to noninvasively quantify tissue biomechanics and determine the added diagnostic value of biomechanics for predicting response throughout neoadjuvant chemotherapy (NAC). Materials and Methods In this prospective study (between September 2020 and August 2023; registration no. NCT03238144), participants with breast cancer scheduled to undergo NAC underwent five MRE scans at different time points alongside clinical dynamic contrast-enhanced MRI (DCE MRI). Regions of interest were drawn over the tumor region for the first two scans, while for the post-NAC scan, the initial pre-NAC tumor footprint was used. Biomechanics, specifically tumor stiffness and phase angle within these regions of interest, were quantified as well as the corresponding ratios relative to before NAC (tumor-stiffness ratio and phase-angle ratio, respectively). Postsurgical pathologic analysis was used to determine complete and partial responders. Furthermore, a repeatability analysis was performed for 18 participants. Results Datasets of 41 female participants (mean age, 47 years ± 12.5 [SD]) were included in this analysis. The tumor-stiffness ratio following NAC decreased significantly for complete responders and increased for partial responders (0.76 ± 0.16 and 1.14 ± 0.24, respectively; <i>P</i> < .001). The phase-angle ratio after the first cycle of the first NAC regimen compared with before NAC predicted pathologic response (1.23 ± 0.31 vs 0.91 ± 0.34; <i>P</i> < .001). Combining the tumor stiffness ratio with DCE MRI improved specificity compared with DCE MRI alone (96% vs 44%) while maintaining the high sensitivity of DCE MRI (94%). Repeatability analysis showed excellent agreement for elasticity (repeatability coefficient, 8.3%) and phase angle (repeatability coefficient, 5%). Conclusion MRE-derived phase-angle ratio and tumor stiffness ratio were associated with pathologic complete response in participants with breast cancer undergoing NAC, and a combined DCE MRI plus MRE approach significantly enhanced specificity for identification of complete responders after NAC, while maintaining high sensitivity. <b>Keywords:</b> Breast Cancer, MR Elastography, Neoadjuvant Chemotherapy, Dynamic Contrast-enhanced MRI <i>Supplemental material is available for this article.</i> Clinical trials registration no. NCT03238144 Published under a CC BY 4.0 license.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 2","pages":"e240138"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Imaging cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/rycan.240138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To evaluate the ability of MR elastography (MRE) to noninvasively quantify tissue biomechanics and determine the added diagnostic value of biomechanics for predicting response throughout neoadjuvant chemotherapy (NAC). Materials and Methods In this prospective study (between September 2020 and August 2023; registration no. NCT03238144), participants with breast cancer scheduled to undergo NAC underwent five MRE scans at different time points alongside clinical dynamic contrast-enhanced MRI (DCE MRI). Regions of interest were drawn over the tumor region for the first two scans, while for the post-NAC scan, the initial pre-NAC tumor footprint was used. Biomechanics, specifically tumor stiffness and phase angle within these regions of interest, were quantified as well as the corresponding ratios relative to before NAC (tumor-stiffness ratio and phase-angle ratio, respectively). Postsurgical pathologic analysis was used to determine complete and partial responders. Furthermore, a repeatability analysis was performed for 18 participants. Results Datasets of 41 female participants (mean age, 47 years ± 12.5 [SD]) were included in this analysis. The tumor-stiffness ratio following NAC decreased significantly for complete responders and increased for partial responders (0.76 ± 0.16 and 1.14 ± 0.24, respectively; P < .001). The phase-angle ratio after the first cycle of the first NAC regimen compared with before NAC predicted pathologic response (1.23 ± 0.31 vs 0.91 ± 0.34; P < .001). Combining the tumor stiffness ratio with DCE MRI improved specificity compared with DCE MRI alone (96% vs 44%) while maintaining the high sensitivity of DCE MRI (94%). Repeatability analysis showed excellent agreement for elasticity (repeatability coefficient, 8.3%) and phase angle (repeatability coefficient, 5%). Conclusion MRE-derived phase-angle ratio and tumor stiffness ratio were associated with pathologic complete response in participants with breast cancer undergoing NAC, and a combined DCE MRI plus MRE approach significantly enhanced specificity for identification of complete responders after NAC, while maintaining high sensitivity. Keywords: Breast Cancer, MR Elastography, Neoadjuvant Chemotherapy, Dynamic Contrast-enhanced MRI Supplemental material is available for this article. Clinical trials registration no. NCT03238144 Published under a CC BY 4.0 license.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
2.30%
发文量
0
期刊最新文献
Predicting Extranodal Extension with Preoperative Contrast-enhanced CT in Patients with Oropharyngeal Squamous Cell Carcinoma. Cinematic Rendering of Desmoplastic Small Round Cell Tumor. Nodule-in-Nodule Hepatocellular Carcinoma. Clinical and Imaging Predictors of False-Positive and False-Negative Results in Prostate Multiparametric MRI Using PI-RADS Version 2. Tumor Biomechanics Quantified Using MR Elastography to Predict Response to Neoadjuvant Chemotherapy in Individuals with Breast Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1